RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Multifractal Characteristics of Pallidal Single Unit Activity in Patients with Dystonia

PII
S3034615025020021-1
DOI
10.7868/S3034615025020021
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 2
Pages
14-28
Abstract
Statistically, dystonia is the third most common movement disorder. This disease is characterized by involuntary muscle contractions, dystonic tremors, and abnormal postures. To date, the most effective treatment for dystonia is neurosurgical implantation of electrodes for chronic stimulation of deep brain structures (DBS) in the internal segment of the globus pallidus (GPi). To improve the clinical effect, it is necessary to implant a DBS electrode into the zone of pathological activity, the patterns and parameters of which remain unknown. Currently, low-frequency (θ-α) oscillations in the globus pallidus are considered the only potential biomarker of pathological activity in dystonia. It also remains unclear what causes rearrangements in the temporal organization of patterns of neuronal activity, leading to the emergence of pathological symptoms. It's believed that the emergence of such pathological rhythms is associated with the loss of the dynamic complexity of the pattern of neuronal activity in the globus pallidus. This study proposes to use multifractal analysis to assess the relationship between changes in dynamic complexity of single-unit pallidal neural activity and clinical manifestations of dystonia. Microelectrode recordings of single-unit activity were performed from the internal (GPi) and external (GPe) segments of the globus pallidus in 39 patients with dystonia. The multifractal spectra of single-unit activity was calculated using the detrended fluctuation analysis method. The relationship between the parameters of this spectrum and the clinical manifestations of dystonia were assessed. It was shown that a correlation between the multifractal characteristics of pallidal activity and the severity of dystonia is significant only for the pause pattern of the activity of neurons in the internal segment of the globus pallidus. As the severity of dystonia increased, there was a decrease in the width of the multifractal spectrum and an increase in its asymmetry. In addition, it has been revealed that as the microelectrode is immersed deep into the globus pallidus and approaches the intended target point for implantation of the stimulating DBS electrode, the tendency towards asymmetry increases. The clinical effect of DBS on the BFMDRS (The Burke-Fahn-Marsden Dystonia Rating Scale) severity was correlated with the asymmetry of the multifractal spectrum of activity of pallidal neurons located in the stimulation area. It was also demonstrated that clinical effect on dystonic tremor was significantly correlated with multifractal spectral parameters, which reflect degree of anti-correlation in the signal. These parameters of the multifractal spectrum were also correlated with the intensity of low-frequency (3-8 Hz) oscillations. These results imply that a decrease in the degree of anticorrelation of the neural activity pattern and the appearance of pathological θ-oscillations, as a consequence of these changes in the temporal organization of neural patterns, may be associated with phasic symptoms of dystonia, such as dystonic tremor. At the same time, the asymmetry of the multifractal spectrum, expressed in its shift towards insensitivity to large «corrective» fluctuations in head position and to the full influence of «fixing» fluctuations of small amplitudes, probably determines the tonic component of dystonia symptoms and its generalization. In general, the findings of this study suggest the potential use of multifractal features of neural activity in the globus pallidus as biomarkers for pathological activity in dystonia and for assessing and predicting the clinical response to deep brain stimulation (DBS).
Keywords
дистония бледный шар мультифрактальный анализ микроэлектродная регистрация
Date of publication
01.04.2025
Year of publication
2025
Number of purchasers
0
Views
39

References

  1. 1. Chen C., Kühn A., Trottenberg T. et al. Neuronal activity in globus pallidus interna can be synchronized to local field potential activity over 3-12 Hz in patients with dystonia // Exp. Neurol. 2007. V. 202. № 2. P. 480.
  2. 2. Silberstein P., Kuhn A.A., Kupsch A. et al. Patterning of globus pallidus local field potentials differs between Parkinson's disease and dystonia // Brain. 2003. V. 126. Pt. 12. P. 2597.
  3. 3. Neumann W.-J., Horn A., Ewert S. et al. A localized pallidal physiomarker in cervical dystonia // Ann. Neurol. 2017. V. 82. № 6. P. 912.
  4. 4. Scheller U., Lofredi R., van Wijk B.C.M. et al. Pallidal low-frequency activity in dystonia after cessation of long-term deep brain stimulation // Mov. Disord. 2019. V. 34. № 11. P. 1734.
  5. 5. Stam C.J., de Bruin E.A. Scale-free dynamics of global functional connectivity in the human brain // Hum. Brain Mapp. 2004. V. 22. № 2. P. 97.
  6. 6. Joseph A.J., Pournami P.N. Multifractal theory based breast tissue characterization for early detection of breast cancer // Chaos, Solitons & Fractals. 2021. V. 152. P. 111301.
  7. 7. Captur G., Karperien A.L., Hughes A.D. et al. The fractal heart - embracing mathematics in the cardiology clinic // Nat. Rev. Cardiol. 2017. V. 14. № 1. P. 56.
  8. 8. Jelinek H.F., Fernandez E. Neurons and fractals: How reliable and useful are calculations of fractal dimensions? // J. Neurosci. Methods. 1998. V. 81. № 1-2. P. 9.
  9. 9. Diniz A., Wijnants M.L., Torre K. et al. Contemporary theories of 1/f noise in motor control // Hum. Mov. Sci. 2011. V. 30. № 5. P. 889.
  10. 10. Veerakumar A., Tiruvadi V., Howell B. et al. Field potential 1/f activity in the subcallosal cingulate region as a candidate signal for monitoring deep brain stimulation for treatment-resistant depression // J. Neurophysiol. 2019. V. 122. № 3. P. 1023.
  11. 11. Donoghue T., Haller M., Peterson E.J. et al. Parameterizing neural power spectra into periodic and aperiodic components // Nat. Neurosci. 2020. V. 23. № 12. P. 1655.
  12. 12. Popivanov D., Stomonyakov V., Minchev Z. et al. Multifractality of decomposed EEG during imaginary and real visual-motor tracking // Biol. Cybern. 2006. V. 94. № 2. P. 149.
  13. 13. Wink A.M., Bullmore E., Barnes A. et al. Monofractal and multifractal dynamics of low frequency endogenous brain oscillations in functional MRI // Hum. Brain Mapp. 2008. V. 29. № 7. P. 791.
  14. 14. Дик О.Е., Ноздрачев А.Д. Динамика паттернов электрической активности мозга при нарушениях его функционального состояния // Усп. физиол. наук. 2020. Т. 51. № 2. С. 68.
  15. 15. Qianli M.A., Xinbao N., Jun W., Chunhua B. A new measure to characterize multifractality of sleep electroencephalogram // Chin. Sci. Bull. 2006. V. 51. № 24. P. 3059.
  16. 16. Song I.H., Lee D.S. Fluctuation dynamics in electroencephalogram time series / Mechanisms, symbols, and models underlying cognition. IWINAC 2005. Lecture notes in computer science // Eds. Mira J., Álvarez J.R. Springer, Berlin, Heidelberg, 2005. V. 3561. P. 281.
  17. 17. Maimaiti B., Meng H., Lv Y. et al. An overview of EEG-based machine learning methods in seizure prediction and opportunities for neurologists in this field // Neuroscience. 2021. V. 481. P. 197.
  18. 18. Zheng Y., Gao J., Sanchez J.C. et al. Multiplicative multifractal modeling and discrimination of human neuronal activity // Physics Letters. A. 2005. V. 344. P. 253.
  19. 19. Andres D.S. On the motion of spikes: A model of multifractality as observed in the neuronal activity of the human basal ganglia // bioRxiv. 2017. doi: https://doi.org/10.1101/223164
  20. 20. Semenova U., Dzhalagoniya I., Gamaleya A. et al. Pallidal multifractal complexity is a new potential physiomarker of dystonia // Clin. Neurophysiol. 2024. V. 162. P. 31.
  21. 21. Ihlen E. Introduction to multifractal detrended fluctuation analysis in Matlab // Front. Physiol. 2012. V. 3. P. 141.
  22. 22. Кириченко Л.О. Сравнительный мультифрактальный анализ временных рядов методами детрендированного флуктуационного анализа и максимумов модулей вейвлет-преобразования // Автоматизированные системы управления и приборы автоматики. 2011. T. 157. C. 66.
  23. 23. Kantelhardt J., Zschiegner S., Koscielny-Bunde E. et al. Multifractal detrended fluctuation analysis of nonstationary time series // Physica A. 2002. V. 316. P. 87.
  24. 24. Myrov V., Sedov A., Belova E. Neural activity clusterization for estimation of firing pattern // J. Neurosci. Methods. 2019. V. 311. P. 164.
  25. 25. Muresan R., Jurjut O., Moca V. et al. The oscillation score: An efficient method for estimating oscillation strength in neuronal activity // J. Neurophysiol. 2008. V. 99. № 3. P. 1333.
  26. 26. Shaikh A., Zee D., Crawford J., Jinnah H. Cervical dystonia: A neural integrator disorder // Brain. 2016. V. 139. Pt. 10. P. 2590.
  27. 27. Sedov A., Usova S., Semenova U. et al. The role of pallidum in the neural integrator model of cervical dystonia // Neurobiol. Dis. 2019. V. 125. P. 45.
  28. 28. Shaikh A.G., Wong A.L., Zee D.S., Jinnah H.A. Keeping your head on target // J. Neurosci. 2013. V. 33. № 27. P. 11281.
  29. 29. Kelty-Stephen D.G., Lee I.C., Carver N.S. et al. Multifractal roots of suprapostural dexterity // Hum. Mov. Sci. 2021. V. 76. P. 102771.
  30. 30. Tang J.K., Mahant N., Cunic D. et al. Changes in cortical and pallidal oscillatory activity during the execution of a sensory trick in patients with cervical dystonia // Exp. Neurol. 2007. V. 204. № 2. P. 845.
  31. 31. Barow E., Neumann W.J., Brücke C. et al. Deep brain stimulation suppresses pallidal low frequency activity in patients with phasic dystonic movements // Brain. 2014. V. 137. Pt. 11. P. 3012.
  32. 32. Yokochi F., Kato K., Iwamuro H. et al. Resting-state pallidal-cortical oscillatory couplings in patients with predominant phasic and tonic dystonia // Front. Neurol. 2018. V. 9. P. 375.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library