RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Application of ultrasound to assess body composition and physiological changes in skeletal muscles

PII
S3034615025010114-1
DOI
10.7868/S3034615025010114
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
123-136
Abstract
Ultrasound (US) is widely used in medicine; however, the capabilities of this method go far beyond clinical diagnostics. Over the past half century, the West has been actively developing the direction of using ultrasound to assess body composition, muscle changes under physical activity, assess muscle composition by fiber type, and analyze changes in fat and muscle components of body composition over time. Compaction of sizes, technological evolution of the transmitter, new algorithms for recording and processing the reflected signal contributed to the creation of ultra-light, high-power ultrasound scanners with high resolution, which are synchronized with the smartphone of an ultrasound diagnostic specialist. Among specialists in the field of sports and muscle activity, cheaper ultrasound devices are also becoming widespread, which allow measurements in A- and B-modes in healthy people. This review presents modern areas of ultrasound use outside the field of medical diagnostics and the application of this method in sports physiology and anthropology, as well as the limitations of the method and prospects for its development.
Keywords
ультразвуковое исследование А-режим УЗИ В-режим УЗИ скелетные мышцы качество мышц состав тела подкожный жир висцеральный жир
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
39

References

  1. 1. Драпкина О.М., Ангарский Р.К., Рогожкина Е.А. и др. Ультразвук-ассистированная оценка толщины висцеральной и подкожной жировой ткани. Методические рекомендации // Кардиоваскуляр. терапия и профилакт. 2023. Т. 22. № 3. С. 3552.
  2. 2. Сусляева Н., Завадовская В.Д., Шульга О.С. и др. Алгоритм дифференциальной диагностики абдоминального и висцерального ожирения у пациентов с избыточной массой тела // Луч. диагност. и терапия. 2014. № 3. С. 61.
  3. 3. Storchle P., Muller W., Sengeis M. et al. Measurement of mean subcutaneous fat thickness: Eight standardised ultrasound sites compared to 216 randomly selected sites // Sci. Rep. 2018. V. 8. № 1. P. 16268.
  4. 4. Suzuki R., Watanabe S., Hirai Y. et al. Abdominal wall fat index, estimated by ultrasonography, for assessment of the ratio of visceral fat to subcutaneous fat in the abdomen // Am. J. Med. 1993. V. 95. № 3. P. 309.
  5. 5. Wagner D.R., Cain D.L., Clark N.W. Validity and reliability of A-mode ultrasound for body composition assessment of NCAA division I athletes // PLoS One. 2016. V. 11. № 4. P. e0153146.
  6. 6. Schlecht I., Wiggermann P., Behrens G. et al. Reproducibility and validity of ultrasound for the measurement of visceral and subcutaneous adipose tissues // Metabolism. 2014. V. 63. № 12. P. 1512.
  7. 7. Baranauskas M.N., Johnson K.E., Juvancic‐Heltzel J.A. et al. Seven‐site versus three‐site method of body composition using BodyMetrix ultrasound compared to dual‐energy X‐ray absorptiometry // Clin. Physiol. Funct. Imaging. 2017. V. 37. № 3. P. 317.
  8. 8. Bazzocchi A., Filonzi G., Ponti F. et al. Accuracy, reproducibility and repeatability of ultrasonography in the assessment of abdominal adiposity // Acad. Radiol. 2011. V. 18. № 9. P. 1133.
  9. 9. Gradmark A.M., Rydh A., Renström F. et al. Computed tomography-based validation of abdominal adiposity measurements from ultrasonography, dual-energy X-ray absorptiometry and anthropometry // Br. J. Nutr. 2010. V. 104. № 4. P. 582.
  10. 10. Johnson K.E., Miller B., Gibson A.L. et al. A comparison of dual‐energy X‐ray absorptiometry, air displacement plethysmography and A‐mode ultrasound to assess body composition in college‐age adults // Clin. Physiol. Funct. Imaging. 2017. V. 37. № 6. P. 646.
  11. 11. Johnson K.E., Miller B., Juvancic‐Heltzel J.A. et al. Agreement between ultrasound and dual‐energy X‐ray absorptiometry in assessing percentage body fat in college‐aged adults // Clin. Physiol. Funct. Imaging. 2014. V. 34. № 6. P. 493.
  12. 12. Kang S., Park J.H., Seo M.W. et al. Validity of the portable ultrasound BodyMetrix™ BX-2000 for measuring body fat percentage // Sustainability. 2020. V. 12. № 21. P. 8786.
  13. 13. Loenneke J.P., Barnes J.T., Wagganer J.D., Pujol T.J. Validity of a portable computer‐based ultrasound system for estimating adipose tissue in female gymnasts // Clin. Physiol. Funct. Imaging. 2014. V. 34. № 5. P. 410.
  14. 14. Pineau J.C., Filliard J.R., Bocquet M. Ultrasound techniques applied to body fat measurement in male and female athletes // J. Athl. Train. 2009. V. 44. № 2. P. 142.
  15. 15. Pineau J.C., Guihard-Costa A.M., Bocquet M. Validation of ultrasound techniques applied to body fat measurement: a comparison between ultrasound techniques, air displacement plethysmography and bioelectrical impedance vs. dual-energy X-ray absorptiometry // Ann. Nutr. Metab. 2007. V. 51. № 5. P. 421.
  16. 16. Ripka W.L., Gewehr P.M., Ulbricht L. Fat percentage evaluation through portable ultrasound in adolescents: A comparison with dual energy X-ray absorptiometry / 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES). 5—7 December, Kuala Lumpur, Malaysia, 2016. P. 146. doi: 10.1109/IECBES.2016.7843432
  17. 17. Ripka W.L., Ulbricht L., Menghin L., Gewehr P.M. Portable A‐mode ultrasound for body composition assessment in adolescents // J. Ultrasound Med. 2016. V. 35. № 4. P. 755.
  18. 18. Schoenfeld B.J., Aragon A.A., Moon J. et al. Comparison of amplitude‐mode ultrasound versus air displacement plethysmography for assessing body composition changes following participation in a structured weight‐loss programme in women // Clin. Physiol. Funct. Imaging. 2017. V. 37. № 6. P. 663.
  19. 19. Smith-Ryan A.E., Fultz S.N., Melvin M.N. et al. Reproducibility and validity of A-mode ultrasound for body composition measurement and classification in overweight and obese men and women // PLoS One. 2014. V. 9. № 3. P. e91750.
  20. 20. Totosy de Zepetnek J.O., Lee J.J., Boateng T. et al. Test–retest reliability and validity of body composition methods in adults // Clin. Physiol. Funct. Imaging. 2021. V. 41. № 5. P. 417.
  21. 21. Aldrich J.E. Basic physics of ultrasound imaging // Crit. Care Med. 2007. V. 35 (5 Suppl). P. S131.
  22. 22. Bachu V.S., Kedda J., Suk I. et al. High-intensity focused ultrasound: A review of mechanisms and clinical applications // Ann. Biomed. Eng. 2021. V. 49. № 9. P. 1975.
  23. 23. Goss S., Johnston R., Dunn F. Comprehensive compilation of empirical ultrasonic properties of mammalian tissues // J. Acoust. Soc. Am. 1978. V. 64. № 2. P. 423.
  24. 24. Barnett S.B., Ter Haar G.R., Ziskin M.C. et al. International recommendations and guidelines for the safe use of diagnostic ultrasound in medicine // Ultrasound Med. Biol. 2000. V. 26. № 3. P. 355.
  25. 25. Dankel S.J., Abe T., Bell Z.W. et al. The impact of ultrasound probe tilt on muscle thickness and echo-intensity: A cross-sectional study // J. Clin. Densitom. 2020. V. 23. № 4. P. 630.
  26. 26. Wagner D.R., Teramoto M., Judd T. et al. Comparison of A-mode and B-mode ultrasound for measurement of subcutaneous fat // Ultrasound Med. Biol. 2020. V. 46. № 4. P. 944.
  27. 27. Lee J.-W., Hong S.-U., Lee J.-H., Park S.-Y. Estimation of validity of A-mode ultrasound for measurements of muscle thickness and muscle quality // Bioengineering. 2024. V. 11. № 2. P. 149.
  28. 28. Ribeiro G., de Aguiar R.A., Penteado R. et al. A-mode ultrasound reliability in fat and muscle thickness measurement // J. Strength Cond. Res. 2022. V. 36. № 6. P. 1610.
  29. 29. Ross R., Aru J., Freeman J. et al. Abdominal adiposity and insulin resistance in obese men // Am. J. Physiol. Endocrinol. Metab. 2002. V. 282. № 3. P. E657.
  30. 30. Маркова Т.Н., Кичигин В.А., Диомидова В.Н. и др. Оценка объема жировой ткани антропометрическими и лучевыми методами и его связь с компонентами метаболического синдрома // Ожирение и метаболизм. 2013. Т. 10. № 2. С. 23.
  31. 31. Kuk J.L., Church T.S., Blair S.N., Ross R. Does measurement site for visceral and abdominal subcutaneous adipose tissue alter associations with the metabolic syndrome? // Diabetes Care. 2006. V. 29. № 3. P. 679.
  32. 32. Rolfe E.D.L., Sleigh A., Finucane F.M. et al. Ultrasound measurements of visceral and subcutaneous abdominal thickness to predict abdominal adiposity among older men and women // Obesity. 2010. V. 18. № 3. P. 625.
  33. 33. Bondareva E.A., Parfenteva O.I., Troshina E.A. et al. Agreement between bioimpedance analysis and ultrasound scanning in body composition assessment // Am. J. Hum. Biol. 2024. V. 36. № 4. P. e24001.
  34. 34. Bullen B.A., Quaade F., Olessen E., Lund S.A. Ultrasonic reflections used for measuring subcutaneous fat in humans // Hum. Biol. 1965. V. 37. № 4. P. 375.
  35. 35. Müller W., Lohman T.G., Stewart A.D. et al. Subcutaneous fat patterning in athletes: selection of appropriate sites and standardisation of a novel ultrasound measurement technique: ad hoc working group on body composition, health and performance, under the auspices of the IOC Medical Commission // Br. J. Sports Med. 2016. V. 50. № 1. P. 45.
  36. 36. Kumar A. Non-Invasive estimation of muscle fiber type using ultrasonography // Int. J. Phys. Educ. Sports Health. 2023. V. 10. № 1. P. 89.
  37. 37. Ashir A., Jerban S., Barrère V. et al. Skeletal muscle assessment using quantitative ultrasound: A narrative review // Sensors (Basel). 2023. V. 23. № 10. P. 4763.
  38. 38. Nagae M., Umegaki H., Yoshiko A., Fujita K. Muscle ultrasound and its application to point-of-care ultrasonography: A narrative review // Ann. Med. 2023. V. 55. № 1. P. 190.
  39. 39. Масенко В.Л., Коков А.Н., Григорьева И.И., Кривошапова К.Е. Лучевые методы диагностики саркопении // Исследования и практика в медицине. 2019. Т. 6. № 4. С. 127.
  40. 40. Соколова А.В., Климова А.В., Драгунов Д.О. и др. Организация медицинской помощи пациентам с саркопенией: методические рекомендации. М.: ГБУ “НИИОЗММ ДЗМ”, 2023. 49 с.
  41. 41. Cho Y.K., Jung H.N., Kim E.H. et al. Association between sarcopenic obesity and poor muscle quality based on muscle quality map and abdominal computed tomography // Obesity. 2023. V. 31. № 6. P. 1547.
  42. 42. Farsijani S., Santanasto A.J., Miljkovic I. et al. The relationship between intermuscular fat and physical performance is moderated by muscle area in older adults // J. Gerontol. A Biol. Sci. Med. Sci. 2021. V. 76. № 1. P. 115.
  43. 43. Heckmatt J.Z., Pier N., Dubowitz V. Real-time ultrasound imaging of muscles // Muscle Nerve. 1988. V. 11. № 1. P. 56.
  44. 44. Goodpaster B.H., Bergman B.C., Brennan A.M., Sparks L.M. Intermuscular adipose tissue in metabolic disease // Nat. Rev. Endocrinol. 2023. V. 19. № 5. P. 285.
  45. 45. Schmitz G., Dencks S. Ultrasound imaging // Recent Results Cancer Res. 2020. V. 216. P. 135.
  46. 46. Mechelli F., Arendt-Nielsen L., Stokes M., Agyapong-Badu S. Validity of ultrasound imaging versus magnetic resonance imaging for measuring anterior thigh muscle, subcutaneous fat, and fascia thickness // Methods Protoc. 2019. V. 2. № 3. P. 58.
  47. 47. Mirón Mombiela R., Vucetic J., Rossi F., Tagliafico A.S. Ultrasound biomarkers for sarcopenia: What can we tell so far? // Semin. Musculoskelet. Radiol. 2020. V. 24. № 2. P. 181.
  48. 48. Sun X., Croxford A.J., Drinkwater B.W. Continuous monitoring with a permanently installed high-resolution ultrasonic phased array // Struct. Health Monit. 2023. V. 22. № 5. P. 3451.
  49. 49. Sahinis C., Kellis E. Hamstring muscle quality properties using texture analysis of ultrasound images // Ultrasound Med. Biol. 2023. V. 49. № 2. P. 431.
  50. 50. Wong V., Spitz R.W., Bell Z.W. et al. Exercise induced changes in echo intensity within the muscle: A brief review // J. Ultrasound. 2020. V. 23. № 4. P. 457.
  51. 51. Van den Broeck J., Héréus S., Cattrysse E. et al. Reliability of muscle quantity and quality measured with extended-field-of-view ultrasound at nine body sites // Ultrasound Med. Biol. 2023. V. 49. № 7. P. 1544.
  52. 52. Wilkinson T.J., Ashman J., Baker L.A. et al. Quantitative muscle ultrasonography using 2d textural analysis: A novel approach to assess skeletal muscle structure and quality in chronic kidney disease // Ultrason. Imaging. 2021. V. 43. № 3. P. 139.
  53. 53. Yoshiko A., Kaji T., Sugiyama H. et al. Twenty-four months' resistance and endurance training improves muscle size and physical functions but not muscle quality in older adults requiring long-term care // J. Nutr. Health Aging. 2019. V. 23. № 6. P. 564.
  54. 54. Rowe G.S., Blazevich A.J., Haff G.G. pQCT- and ultrasound-based muscle and fat estimate errors after resistance exercise // Med. Sci. Sports Exerc. 2019. V. 51. № 5. P. 1022.
  55. 55. Botton C.E., Umpierre D., Rech A. et al. Effects of resistance training on neuromuscular parameters in elderly with type 2 diabetes mellitus: A randomized clinical trial // Exp. Gerontol. 2018. V. 113. P. 141.
  56. 56. Cadore E.L., González-Izal M., Grazioli R. et al. Effects of Concentric and Eccentric Strength Training on Fatigue Induced by Concentric and Eccentric Exercises // Int. J. Sports Physiol. Perform. 2019. V. 14. № 1. P. 91.
  57. 57. Oranchuk D.J., Stock M.S., Nelson A.R. et al. Variability of regional quadriceps echo intensity in active young men with and without subcutaneous fat correction // Appl. Physiol. Nutr. Metab. 2020. V. 45. № 7. P. 745.
  58. 58. Crawford S.K., Lee K.S., Bashford G.R., Heiderscheit B.C. Spatial-frequency analysis of the anatomical differences in hamstring muscles // Ultrason. Imaging. 2021. V. 43. № 2. P. 100.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library