RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Method for Determining the Lactate Anaerobic Threshold during the Shuttle Run Test

PII
10.31857/S0131164624050083-1
DOI
10.31857/S0131164624050083
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 5
Pages
76-86
Abstract
The aim of the study was to determine the lactate anaerobic threshold (LT2) in elite football players during the submaximal multistage shuttle run test. 126 elite football players took part in the study. During the test and the recovery period monitoring of heart rate, running speed and lactate concentration was performed. To assess the level of LT2 the method of fixed determination of lactate level (La 4 mmol/l) and the Dmod method (LT2 Dmod) were used. It was found that there is a correlation between heart rate and running speed at the level of La 4 mmol/l and LT2 Dmod. Players who achieve higher speeds on LT2 Dmod (m/s) have a lower lactate concentration in the second minute of recovery. Players whose lactate concentration was lower in the second minute of recovery were characterized by a lower heart rate in the first minute of recovery. Players with a higher heart rate in the first minute of recovery have a higher heart rate at the level of LT2 Dmod. The results of the study confirm the possibility of using submaximal shuttle run tests to determine the anaerobic threshold of athletes.
Keywords
футбол лактат анаэробный порог работоспособность челночный бег
Date of publication
01.05.2024
Year of publication
2024
Number of purchasers
0
Views
26

References

  1. 1. Palucci Vieira L.H., Carling C., Barbieri F.A. et al. Match running performance in young soccer players: A systematic review // Sports Med. 2019. V. 49. № 2. P. 289.
  2. 2. Garcia-Tabar I., Rampinini E., Gorostiaga E.M. Lactate equivalent for maximal lactate steady state determination in soccer // Res. Q. Exerc. Sport. 2019. V. 90. № 4. P. 678.
  3. 3. Da Silva J.F., Dittrich N., Guglielmo L.G.A. Aerobic evaluation in soccer // Rev. Bras. Cineantropom. Desempenho Hum. 2011. V. 13. № 5. P. 384.
  4. 4. Slimani M., Znazen H., Miarka B., Bragazzi N. Maximum oxygen uptake of male soccer players according to their competitive level, playing position and age group: implication from a network meta-analysis // J. Hum. Kinet. 2019. V. 66. № 1. P. 233.
  5. 5. Casajus J.A. Seasonal variation in fitness variables in professional soccer players // J. Sports Med. Phys. Fitness. 2001. V. 41. № 4. P. 463.
  6. 6. Buchheit M., Dikmen U., Vasallo C. The 30—15 Intermittent Fitness Test – two decades of learnings // Sport Perform Sci. Rep. 2021. V. 1. P. 148.
  7. 7. Алексеев В.М., Орлов А.В., Уколова А.Э. и др. Работоспособность в непрерывных и интервальных челночных тестах с нарастающей нагрузкой // Теория и практика физ. культуры. 2017. № 7. С. 22.
  8. 8. Bangsbo J., Iaia F.M., Krustrup P. The Yo-Yo intermittent recovery test: a useful tool for evaluation of physical performance in intermittent sports // Sports Med. 2008. V. 38. № 1. P. 37.
  9. 9. Krustrup P., Bradley P., Christensen J. et al. The Yo-Yo IE2 test: physiological response for untrained men versus trained soccer players // Med. Sci. Sports Exerc. 2015. V. 47. № 1. P. 100.
  10. 10. Modric T., Versic S., Sekulic D. Aerobic fitness and game performance indicators in professional football players; playing position specifics and associations // Heliyon. 2020. V. 6. № 11. P. e05427.
  11. 11. Хомякова А.А., Кузьмичев В.А., Копров С.В. и др. Оценка скорости восстановления футболистов после выполнения различных видов челночных беговых тестов // Человек. Спорт. Медицина. 2023. Т. 23. № 1. С. 19.
  12. 12. Селуянов В.Н., Сарсания С.К., Сарсания К.С. и др. Контроль физической подготовленности в спортивной адаптологии // Теория и практика физ. культуры. 2008. № 5. С. 36, 55.
  13. 13. Shushan T., McLaren S.J., Buchheit M. et al. Submaximal fitness tests in team sports: a theoretical framework for evaluating physiological state // Sports Med. 2022. V. 52. № 11. P. 2605.
  14. 14. Leger L.A., Lambert J.A. A maximal multistage 20-m shuttle run test to predict VO2max // Eur. J. Appl. Physiol. Occup. Physiol. 1982. V. 49. № 1. P. 1.
  15. 15. Абрамова Т.Ф. Никитина Т.М., Кочеткова Н.И. Лабильные компоненты массы тела – критерии общей физической подготовленности и контроля текущей и долговременной адаптации к тренировочным нагрузкам: метод. рекомендации. М.: Скайпринт, 2013. 132 с.
  16. 16. Bastida-Castillo A., Gomez-Carmona C.D., Sanchez E., Pino-Ortega A. Comparing accuracy between global positioning systems and ultra-wideband-based position tracking systems used for tactical analyses in soccer // Eur. J. Sport Sci. 2019. V. 19. № 9. P. 1157.
  17. 17. Faude O., Kindermann W., Meyer T. Lactate threshold concepts, how valid are they? // Sports Med. 2009. V. 39. № 6. P. 469.
  18. 18. Спирин Т.С., Чикуров А.И., Радаева С.В. Оптимальный метод определения второго лактатного (анаэробного) порога в циклических видах спорта // Вестник Томского государственного университета. 2023. № 489. С. 193.
  19. 19. Zwingmann L., Strütt S., Martin A. et al. Modifications of the Dmax method in comparison to the maximal lactate steady state in young male athletes // Phys. Sportsmed. 2019. V. 47. № 2. P. 174.
  20. 20. Coelho D.B., Mortimer L.A., Condessa L.A. et al. Anaerobic threshold in different categories of soccer players // Rev. Bras. Cineantropom. Desempenho Hum. 2009. V. 11. № 1. P. 81.
  21. 21. Ziogas G.G., Patras K.N., Stergiou N., Georgoulis A.D. Velocity at lactate threshold and running economy must also be considered along with maximal oxygen uptake when testing elite soccer players during preseason // J. Strength Cond. Res. 2011. V. 25. № 2. P. 414.
  22. 22. Kalapotharakos V.I., Ziogas G., Tokmakidis S.P. Seasonal aerobic performance variations in elite soccer players // J. Strength Cond. Res. 2011. V. 25. № 6. P. 1502.
  23. 23. Sliwowski R., Andrzejewski M., Wieczorek A. et al. Changes in the anaerobic threshold in an annual cycle of sport training of young soccer players // Biol. Sport. 2013. V. 30. № 2. P. 137.
  24. 24. Cerda-Kohler H., Burgos C., Ramires-Campillo R. et al. Analysis of agreement between four lactate threshold measurements methods in professional soccer players // J. Strength Cond. Res. 2016. V. 30. № 10. P. 2864.
  25. 25. Parpa K.M., Michaelides M. Comparison of ventilatory and blood lactate thresholds in elite soccer players // Sport Mont. J. 2022. V. 20. № 3. P. 3.
  26. 26. Broich H., Sperlich B., Buitrago S., Mathes S. Performance assessment in elite football players: field level test versus spiroergometry // J. Hum. Sport Exerc. 2012. V. 7. № 1. P. 287.
  27. 27. McMillan K., Helgerud J., Grant S.J. et al. Lactate threshold responses to a season of professional British youth soccer // Br. J. Sports Med. 2005. V. 39. № 7. P. 432.
  28. 28. Altmann S., Kuberczyk M., Ringhof S. et al. Relationships between performance test and match-related physical performance parameters // Ger. J. Exerc. Sport Res. 2018. V. 48. № 2. P. 218.
  29. 29. Carminatti L.J., Batista B.N., Silva J.F. et al. Predicting maximal lactate steady state from Carminatti’s shuttle run test in soccer players // Int. J. Sports Med. 2021. V. 42. № 2. P. 153.
  30. 30. Abt G., Lovell R. The use of individualized speed and intensity thresholds for determining the distance run at high-intensity in professional soccer // J. Sports Sci. 2009. V. 27. № 9. P. 893.
  31. 31. Billat V.L., Morton R.H., Blondel N. et al. Oxygen kinetics and modeling of time to exhaustion whilst running at various velocities at maximal oxygen uptake // Eur. J. Appl. Physiol. 2000. V. 82. № 3. P. 178.
  32. 32. Kalapotharakos V., Strimpakos N., Vithoulka I. et al. Physiological characteristics of elite professional soccer teams of different ranking // J. Sports Med. Phys. Fitness. 2011. V. 46. № 4. P. 515.
  33. 33. Di Prampero P.E., Botter A., Osgnach C. The energy cost of sprint running and the role of metabolic power in setting top performances // Eur. J. Appl. Physiol. 2015. V. 115. № 3. P. 451.
  34. 34. Akenhead R., French D., Thompson K.G., Hayes P.R. The physiological consequences of acceleration during shuttle running // Int. J. Sports Med. 2014. V. 36. № 4. P. 302.
  35. 35. Buchheit M., Simpson B.M., Lacome M. Monitoring cardiorespiratory fitness in professional soccer players: Is it worth the prick? // Int. J. Sports Physiol. Perform. 2020. V. 15. № 10. P. 1437.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library