RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Localization of Moving Sound Stimuli under Conditions of Spatial Masking

PII
10.31857/S0131164624020043-1
DOI
10.31857/S0131164624020043
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 2
Pages
43-56
Abstract
The aim of this study was to investigate spatial masking of noise signals in the delayed motion paradigm. Spatial effects were created by interaural level differences (ILD). Stationary maskers were located laterally or near the head midline, while test signals moved at different velocities from the head midline towards the ears, or in the opposite direction. The masking effect was measured by shifts in the perceived azimuthal positions of the starting and final points of signal trajectories, compared to their positions in silence. The perceived trajectories of all test signals shifted in the opposite direction from the masker. The masking effect was most pronounced in the spatial regions closest to the maskers, and was stronger when the signal moved towards the masker, compared to moving away from it. The final points were perceptually shifted further than the starting points. Signal velocity and masker presentation side (left or right) did not change the degree of masking.
Keywords
пространственный слух локализация маскировка отсроченное движение
Date of publication
01.02.2024
Year of publication
2024
Number of purchasers
0
Views
22

References

  1. 1. Litovsky R.Y. Spatial release from masking // Acoust. Today. 2012. V. 8. № 2. P. 18.
  2. 2. Gutschalk A., Micheyl C., Oxenham A.J. The pulse-train auditory aftereffect and the perception of rapid amplitude modulations // J. Acoust. Soc. Am. 2008. V. 123. № 2. P. 935.
  3. 3. Lane C.C., Delgutte B. Neural correlates and mechanisms of spatial release from masking: single-unit and population responses in the Inferior Colliculus // J. Neurophysiol. 2005. V. 94. № 2. P. 1180.
  4. 4. Альтман Я.А. Локализация движущегося источника звука. Л.: Наука, Ленингр. отд-ние, 1983. 176 с.
  5. 5. Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
  6. 6. Yost W.A. The cocktail party effect: 40 years later / Localization and Spatial Hearing in Real and Virtual Environments // Eds. Gilkey R., Anderson T. Mahwah, NJ: Erlbaum Press, 1997. P. 329.
  7. 7. Bibee J.M., Stecker G.C. Spectrotemporal weighting of binaural cues: Effects of a diotic interferer on discrimination of dynamic interaural differences // J. Acoust. Soc. Am. 2016. V. 140. № 4. P. 2584.
  8. 8. Альтман Я.А., Вайтулевич С.Ф. Слуховые вызванные потенциалы человека и локализация источника звука. СПб.: Наука, 1992. 136 с.
  9. 9. Shestopalova L., Bőhm T.M., Bendixen A. et al. Do audio-visual motion cues promote segregation of auditory streams? // Front. Neurosci. 2014. V. 8. P. 64.
  10. 10. Pastore M.T., Yost W.A. Spatial Release from Masking with a Moving Target // Front. Psychol. 2017. V. 8. P. 2238.
  11. 11. Yost W.A., Brown C.A. Localizing the sources of two independent noises: Role of time varying amplitude differences // J. Acoust. Soc. Am. 2013. V. 133. № 4. P. 2301.
  12. 12. Zhong X., Yost W.A. How many images are in an auditory scene? // J. Acoust. Soc. Am. 2017. V. 141. № 4. P. 2882.
  13. 13. Варфоломеев А.Л., Старостина Л.В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа // Рос. физиол. журн. им. И.М. Сеченова. 2006. Т. 92. № 9. С. 1046.
  14. 14. Krumbholz K., Hewson-Stoate N., Schonwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. № 2. P. 1649.
  15. 15. Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion // Hear. Res. 2008. V. 246. № 1–2. P. 44.
  16. 16. Getzmann S. Effect of auditory motion velocity on reaction time and cortical processes // Neuropsychologia. 2009. V. 47. № 12. P. 2625.
  17. 17. Getzmann S., Lewald J. Effects of natural versus artificial spatial cues on electrophysiological correlates of auditory motion // Hear. Res. 2010. V. 259. № 1–2. P. 44.
  18. 18. Семенова В.В., Петропавловская Е.А., Шестопалова Л.Б., Никитин Н.И. Константы восприятия отсроченного движения звуковых стимулов // Успехи физиологических наук. 2020. Т. 5. № 2. С. 55.
  19. 19. Шестопалова Л.Б., Петропавловская Е.А., Саликова Д.А. и др. Слуховые вызванные потенциалы человека в условиях пространственной маскировки // Физиология человека. 2022. Т. 48. № 6. С. 32.
  20. 20. Шестопалова Л.Б., Саликова Д.А., Петропавловская Е.А. Слуховой последействие: влияние неподвижного адаптера на восприятие движущегося стимула // Журн. высш. нервн. деят. им. И.П. Павлова. 2023. Т. 73. № 2. С. 256.
  21. 21. Phillips D.P., Hall S.E., Boehnke S.E. Central auditory onset responses, and temporal asymmetries in auditory perception // Hear. Res. 2002. V. 167. № 1–2. P. 192.
  22. 22. Neuhoff J.G. Perceptual bias for rising tones // Nature. 1998. V. 395. № 6698. P. 123.
  23. 23. Ghazanfar A.A., Neuhoff J.G., Logothetis N.K. Auditory looming perception in rhesus monkeys // Proc. Natl. Acad. Sci. U.S.A. 2002. V. 99. № 24. P. 15755.
  24. 24. Hall D.A., Moore D.R. Auditory Neuroscience: The Salience of Looming Sounds // Curr. Biol. 2003. V. 13. № 13. P. R91.
  25. 25. Lu T., Liang L., Wang X. Neural representations of temporally asymmetric stimuli in the auditory cortex of awake primates // J. Neurophysiol. 2001. V. 85. № 6. P. 2364.
  26. 26. Seifritz E., Neuhoff J.G., Bilecen D. et al. Neural processing of auditory looming in the human brain // Curr. Biol. 2002. V. 12. № 24. P. 2147.
  27. 27. Lingner A., Pecka M., Leibold C., Grothe B. A novel concept for dynamic adjustment of auditory space // Sci. Rep. 2018. V. 8. № 1. P. 8335.
  28. 28. Middlebrooks J.C. A Search for a Cortical Map of Auditory Space // J. Neurosci. 2021. V. 41. № 27. P. 5772.
  29. 29. Salminen N.H., May P.J., Alku P., Tiitinen H. A population rate code of auditory space in the human cortex // PLoS One. 2009. V. 4. № 10. P. 7600.
  30. 30. Magezi D.A., Krumbholz K. Evidence for opponent-channel coding of interaural time differences in human auditory cortex // J. Neurophysiol. 2010. V. 104. № 4. P. 1997.
  31. 31. Briley P.M., Kitterick P.T., Summerfield A.Q. Evidence for opponent process analysis of sound source location in humans // J. Assoc. Res. Otolaryngol. 2013. V. 14. № 1. P. 83.
  32. 32. Phillips D.P., Hall S.E. Psychophysical evidence for adaptation of central auditory processors for interaural differences in time and level // Hear. Res. 2005. V. 202. № 1–2. P. 188.
  33. 33. Dingle R.N., Hall S.E., Phillips D.P. The three-channel model of sound localization mechanisms: interaural level differences // J. Acoust. Soc. Am. 2012. V. 131. № 5. P. 4023.
  34. 34. Dingle R.N., Hall S.E., Phillips D.P. The three-channel model of sound localization mechanisms: Interaural time differences // J. Acoust. Soc. Am. 2013. V. 133. № 1. P. 417.
  35. 35. Briley P.M., Goman A.M., Summerfield A.Q. Physiological evidence for a midline spatial channel in human auditory cortex // J. Assoc. Res. Otolaryngol. 2016. V. 17. № 4. P. 331.
  36. 36. Lee A.K., Deane-Pratt A., Shinn-Cunningham B.G. Localization interference between components in an auditory scene // J. Acoust. Soc. Am. 2009. V. 126. № 5. P. 2543.
  37. 37. Irvine D.R.F. Auditory perceptual learning and changes in the conceptualization of auditory cortex // Hear Res. 2018 V. 366. P. 3.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library