RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

EEG-Correlates of Competition and Cooperation

PII
10.31857/S0131164624020038-1
DOI
10.31857/S0131164624020038
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 2
Pages
32-42
Abstract
The aim was to investigate the peculiarities and localization of the current source density of α- and θ-frequency bands accompanying competition and cooperation with another player, as well as individual figure building in a computer game. The sample included forty-two volunteers (24 females) between the ages of 18 and 47. Analysis of differences in the current source density of 127 channel EEG under different game conditions was performed in the eLoreta program. During competition, the θ-current source density in the anterior cingulate cortex and medial prefrontal cortex was greater than during cooperation. According to the literature on functional correlates of θ-rhythm, it can be suggested that the greater increase in medial frontal θ-rhythm detected during competition may be related to focused attention and cognitive control processes. The alpha current source density in the parietal and visual cortex areas during interactive game modes (cooperation and competition) was lower compared to the individual mode. During cooperation the α-current source density was lower compared to the competition mode. The greatest decrease of the α-current source density in the cooperation mode is consistent with idea of a relation between α-rhythm decrease and the processes of understanding the other person’s intentions.
Keywords
ЭЭГ θ-ритм α-ритм конкуренция кооперация социальные взаимодействия
Date of publication
01.02.2024
Year of publication
2024
Number of purchasers
0
Views
20

References

  1. 1. Decety J., Jackson P.L., Sommerville J.A. et al. The neural bases of cooperation and competition: an fMRI investigation // Neuroimage. 2004. V. 23. № 2. P. 744.
  2. 2. Balconi M., Crivelli D., Vanutelli M.E. Why to cooperate is better than to compete: brain and personality components // BMC Neurosci. 2017. V. 18. № 1. P. 68.
  3. 3. Шемякина Н.В., Нагорнова Ж.В. Нейрофизиологические характеристики соревнования в навыках и кооперации при выполнении творческих задач — обзор исследований с использованием технологии гиперсканнинга // Физиология человека. 2021. T. 47. № 1. C. 104.
  4. 4. Balconi M., Vanutelli M.E. Cooperation and competition with hyperscanning methods: review and future application to emotion domain // Front. Comput. Neurosci. 2017. V. 11. P. 86.
  5. 5. Liu D., Liu S., Liu X. et al. Interactive brain activity: review and progress on EEG-based hyperscanning in social interactions // Front. Psychol. 2018. V. 9. P. 1862.
  6. 6. Astolfi L., Toppi J., Borghini G. et al. Study of the functional hyperconnectivity between couples of pilots during flight simulation: an EEG hyperscanning study // Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2011. V. 2011. P. 2338.
  7. 7. Ring C., Kavussanu M., Cooke A. Effects of cooperation and competition on performance, emotion, and effort: goal and means interdependence // J. Sport Exerc. Psychol. 2022. V. 44. № 2. P. 86.
  8. 8. Tauer J.M., Harackiewicz J.M. The effects of cooperation and competition on intrinsic motivation and performance // J. Pers. Soc. Psychol. 2004. V. 86. № 6. P. 849.
  9. 9. Knyazev G.G. Motivation emotion and their inhibitory control mirrored in brain oscillations // Neurosci. Biobehav. Rev. 2007. V. 31. № 3. P. 377.
  10. 10. Ciaramidaro A., Becchio C., Colle L. et al. Do you mean me? Communicative intentions recruit the mirror and the mentalizing system // Soc. Cogn. Affect. Neurosci. 2014. V. 9. № 7. P. 909.
  11. 11. Oberman L.M., Pineda J.A., Ramachandran V.S. The human mirror neuron system: a link between action observation and social skills // Soc. Cogn. Affect. Neurosci. 2007. V. 2. № 1. P. 62.
  12. 12. Perry A., Trojeb N.F., Bentin S. Exploring motor system contributions to the perception of social information: evidence from EEG activity in the mu/alpha frequency range // Soc. Neurosci. 2010. V. 5. № 3. P. 272.
  13. 13. Cavanagh J.F., Frank M.J. Frontal theta as a mechanism for cognitive control // Trends Cogn. Sci. 2014. V. 18. № 8. P. 414.
  14. 14. Cohen M.X. A neural microcircuit for cognitive conflict detection and signaling // Trends Neurosci. 2014. V. 37. № 9. P. 480.
  15. 15. Wascher E., Rasch B., Sänger J. et al. Frontal theta activity reflects distinct aspects of mental fatigue // Biol. Psychol. 2014. V. 96. P. 57.
  16. 16. Magosso E., Ricci G., Ursino M. Alpha and theta mechanisms operating in internal-external attention competition // J. Integr. Neurosci. 2021. V. 20. № 1. P. 1.
  17. 17. Махин С.А. Система “зеркальных нейронов”: Актуальные достижения и перспективы ЭЭГ-исследований // Ученые записки Таврического федерального университета имени В.И. Вернадского. Серия “Биология, химия”. 2012. Т. 25. № 1. C. 142.
  18. 18. Столбков Ю.К., Герасименко Ю.П. Когнитивная двигательная реабилитация: воображение и наблюдение моторных действий // Физиология человека. 2021. Т. 47. № 1. C. 123.
  19. 19. Delorme A., Makeig S. EEGLAB: an open source toolbox for analysis of single- trial EEG dynamics including independent component analysis // J. Neurosci. Methods. 2004. V. 134. № 1. P. 9.
  20. 20. Pascual-Margui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA). Technical details // Methods Find. Exp. Clin. Pharmacol. 2002. V. 24. Suppl D. P. 5.
  21. 21. Бочаров А.В., Савостьянов А.Н., Сапрыгин А.Е., Меркулова Е.А., Таможников С.С., Прошина Е.А., Князев Г.Г. Снижение альфа- и бета-осцилляций в процессе виртуального социального взаимодействия // Физиология человека. 2023. Т. 49. № 1. С. 42.
  22. 22. Каримова Е.Д., Смольская Д.В., Нараткина А.А. Активность зеркальной системы мозга у людей с депрессивным симптомокомплексом // Ж. высш. нервн. деят. им. И.П. Павлова. 2023. Т. 73. № 2. C. 230.
  23. 23. Gevins A., Smith M.E., McEvoy L., Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice // Cereb. Cortex. 1997. V. 7. № 4. P. 374.
  24. 24. Pfurtscheller G., Lopes da Silva F.H. Event-related EEG/MEG synchronization and desynchronization: Basic principles // Clin. Neurophysiol. 1999. V. 110. № 11. P. 1842.
  25. 25. Tang W., Jbabdi S., Zhu Z. et al. A connectional hub in the rostral anterior cingulate cortex links areas of emotion and cognitive control // Elife. 2019. V. 8. P. e43761.
  26. 26. Redcay E., Schilbach L. Using second-person neuroscience to elucidate the mechanisms of social interaction // Nat. Rev. Neurosci. 2019. V. 20. № 8. P. 495.
  27. 27. Hill M.R., Boorman E.D., Fried I. Observational learning computations in neurons of the human anterior cingulate cortex // Nat. Commun. 2016. V. 7. P. 12722.
  28. 28. Apps M.A., Sallet J. Social learning in the medial prefrontal cortex // Trends Cogn. Sci. 2017. V. 21. № 3. P. 151.
  29. 29. Goldberg I.I., Harel M., Malach R. When the brain loses its self: prefrontal inactivation during sensorimotor processing // Neuron. 2006. V. 50. № 2. P. 329.
  30. 30. Gusnard D.A., Akbudak E., Shulman G.L., Raichle M.E. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function // Proc. Natl. Acad. Sci. U.S.A. 2001. V. 98. № 7. P. 4259.
  31. 31. Scheeringa R., Bastiaansen M.C., Petersson K.M. et al. Frontal theta EEG activity correlates negatively with the default mode network in resting state // Int. J. Psychophysiol. 2008. V. 67. № 3. P. 242.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library