RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Influence of 21-day antiortostatic hypokinesia on the functional state of the musculoskeletal system of human

PII
10.31857/S0131164624010061-1
DOI
10.31857/S0131164624010061
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 1
Pages
72-81
Abstract
The influence of antiorthostatic hypokinesia with an inclination angle relative to the horizon of -6 degrees for 21 days was used as a ground model of the physiological effects of weightlessness. 10 practically healthy male volunteers (30.7 ± 5.4 years, 78.0 ± 8.5 kg, 179.7 ± 5.3 cm) took part in the experimental study, who successfully passed the medical expert commission of the SSC RF-IMBP RAS, familiarized with the study program and signed a voluntary informed consent to participate in the study. The state of the musculoskeletal system was assessed according to the results of speed-strength testing on an isokinetic dynamometer before hypokinesia and on the 3rd day after its completion. Staying in conditions of 21-day anti-orthostatic hypokinesia with a body inclination angle of –6° relative to the horizon, as a model of the physiological effects of weightlessness, leads to changes in the functional state of the musculoskeletal lower limbs which manifests itself during speed-strength testing after hypokinesia by a decrease in maximum voluntary force (MPF) of the knee joint extensor muscles from 9 to 15% compared with the base level. The decrease in MPF did not depend on a change in the force gradient, which reflects the ability to exert greater force in the shortest possible time. This indicated that the decrease in the MPF level after hypokinesia was mainly due to a change in the activity of slow motor units. At the same time, we assume that exposure to hypokinesia did not cause a significant change in the activity of fast motor units. This is confirmed by the results of the analysis of the electromyographic activity of the extensor muscles of the knee joint during testing on an isokinetic dynamometer. Also, after hypokinesia, the possibility of using muscle potential significantly decreased - the physiological cost of work increased with a decrease in strength indicators.
Keywords
антиортостатическая гипокинезия максимальная произвольная сила изокинетическое тестирование электромиография
Date of publication
01.01.2024
Year of publication
2024
Number of purchasers
0
Views
13

References

  1. 1. Cromwell R.L., Scott J.M., Downs M. et al. Overview of the NASA 70-day bed rest study // Med. Sci. Sports Exerc. 2018. V. 50. № 9. P. 1909.
  2. 2. Коряк Ю.А. Влияние продолжительного космического полета на изокинетический концентрический и эксцентрический суставной момент разных мышц и концентрическую работоспособность мышц-разгибателей бедра // Международный журнал прикладных и фундаментальных исследований. 2015. № 10. С. 674.
  3. 3. Кукоба Т.Б., Бабич Д.Р., Фомина Е.В., Орлов О.И. Изменения скоростно-силовых качеств мышц при моделировании эффектов космического полета в условиях 21-суточной “сухой” иммерсии // Авиакосм. и эколог. мед. 2020. Т. 54. № 4. С. 23.
  4. 4. Шенкман Б.С. Немировская Т.Л., Белозерова И.Н. и др. Скелетно-мышечные волокна человека после длительного космического полета // Докл. Акад. наук. 1999. Т. 367. № 2. С. 279.
  5. 5. Tesch P.A., Berg H.E., Bring D. et al. Effects of 17-day spaceflight on knee extensor muscle function and size // Eur. J. Appl. Physiol. 2005. V. 93. № 4. P. 463.
  6. 6. Шенкман Б.С., Григорьев А.И., Козловская И.Б. Гравитационные механизмы в тонической двигательной системе. Нейрофизиологические и мышечные аспекты // Физиология человека. 2017. Т. 43. № 5. С. 104.
  7. 7. Козловская И.Б. Гравитация и позно-тоническая двигательная система // Авиакосм. и эколог. мед. 2017. Т. 51. № 3. С. 5.
  8. 8. Черепахин М.А., Первушин В.И. Влияние космического полета на нервно-мышечный аппарат космонавтов // Косм. биол. и мед. 1970. Т. 6. № 4. С. 46.
  9. 9. Какурин Л.И., Черепахин М.А., Первушин В.Н. Влияние факторов космического полета на мышечный тонус у человека // Косм. биол. и мед. 1971. Т. 5. № 2. С. 63.
  10. 10. Bachl N., Baron R., Tschan H. et al. Principles of muscular efficiency under conditions of weightlessness // Wiener Medicinische Wochenschift. 1993. V. 143. № 23–24. Р. 588.
  11. 11. Netreba A.I., Khusnutdinova D.R., Vinogradova O.L., Kozlovskaya I.B. Effect of dry immersion of various durations in combination with artificial stimulation of foot support zones upon force-velocity characteristics of knee extensors // J. Grav. Phys. 2006. V. 13. № 1. P. 71.
  12. 12. Григорьева Л.С., Козловская И.Б. Влияние семисуточной опорной разгрузки на скоростно-силовые свойства скелетных мышц // Косм. биол. и мед. 1983. № 4. С. 21.
  13. 13. Гевлич Г.Н., Григорьева Л.С., Бойко М.И., Козловская И.Б. Оценка тонуса скелетных мышц методом регистрации поперечной жесткости // Косм. биол. и мед. 1983. № 5. С. 86.
  14. 14. Томиловская Е.С., Козловская И.Б. Роль опорной и весовой разгрузки в развитии гипогравитационного двигательного синдрома // Журнал эволюционной биохимии и физиологии. 2020. Т. 56. № 7. С. 697.
  15. 15. Григорьев А.И., Козловская И.Б., Маркин А.А. и др. Годичная антиортостатическая гипокинезия (АНОГ) – физиологическая модель межпланетного космического полета: монография / Под ред. Григорьева А.И., Козловской И.Б. М.: Российская академия наук, 2018. С. 9.
  16. 16. Hermens H.J., Freriks B., Disselhorst-Klug C., Rau G. Development of recommendations for SEMG sensors and sensor placement procedures // J. Electromyogr. Kinesiol. 2000. V. 10. № 5. P. 361.
  17. 17. McBride J.M., Triplett-McBride T., Davie A., Newton R.U. A comparison of strength and power characteristics between power lifters, Olympic lifters, and sprinters // J. Strength Cond. 1999. V. 13. № 1. P. 58.
  18. 18. Зациорский В.М. Физические качества спортсмена: основы теории и методики воспитания. М.: Спорт, 2020. 200 с.
  19. 19. Haff G.G., Nimphius S. Training principles for power // J. Strength Cond. 2012. V. 34. № 6. P. 2.
  20. 20. Haff G.G., Ruben R.P., Lider J. A comparison of methods for determining the rate of force development during isometric midthigh clean pulls // J. Strength Cond. 2015. V. 29. № 2. P. 386.
  21. 21. Koryak Yu.A. Isokinetic Force and Work Capacity After Long-Duration Space Station Mir and Short-Term International Space Station Missions // Aerosp. Med. Hum. Perform. 2020. V. 91. № 5. P. 422.
  22. 22. Rittweger J., Albracht K., Flück M. et al. Sarcolab pilot study into skeletal muscle’s adaptation to long-term spaceflight // NPJ Microgravity. 2018. V. 4. P. 23.
  23. 23. Котов-Смоленский А.М., Хижникова А.Е., Клочков А.С. и др. Поверхностная ЭМГ: применимость в биомеханическом анализе движений и возможности для практической реабилитации // Физиология человека. 2021. Т. 47. № 2. С. 122.
  24. 24. Esposito F., Limonts E., Gobbo M. Electrical and mechanical response of finger flexor muscles during voluntary isometric contractions in elite rock-climbers // Eur. J. Appl. Physiol. 2009. V. 105. № 1. P. 81.
  25. 25. Solomonow M., Baten C., Smit J. Electromyogram power spectra frequencies associated with motor unit recruitment strategies // J. Appl. Physiol. 1990. V. 68. № 3. P. 1177.
  26. 26. Шпаков А.В., Воронов А.В., Артамонов А.А. и др. Биомеханические характеристики ходьбы и бега при разгрузке опорно-двигательного аппарата человека методом вертикального вывешивания // Физиология человека. 2021. Т. 47. № 4. С. 68.
  27. 27. Wakeling J.M., Uehli K., Rozitis A.I. Muscle fibre recruitment can respond to the mechanics of the muscle contraction // J. R. Soc. Interface. 2006. V. 3. № 9. P. 533.
  28. 28. Linnamo V., Moritani T., Nicol C., Komi P.V. Motor unit activation patterns during isometric, concentric and eccentric actions at different force levels // J. Electromyogr. Kinesiol. 2003. V. 13. № 1. Р. 93.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library