RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Modelling of impulse activity of afferent fibers of antagonist muscles during transcutaneous electrical stimulation of the spinal cord during walking

PII
10.31857/S0131164624010035-1
DOI
10.31857/S0131164624010035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 1
Pages
34-44
Abstract
The article describes the results of studies on the impulse activity of various groups of afferent fibers and EMG patterns of lower leg antagonist muscles when walking without, during and after transcutaneous electrical stimulation of the dorsal roots of the lower thoracic spinal cord of a person. Using a mathematical model based on the prediction of the triggering of muscle spindles, variability in the manifestation of impulse activity of various afferents tibialis anterior muscle (TA) and gastrocnemius medialis muscle (GM) when walking under different experimental conditions is shown. It was found that walking on a movable treadmill tape in the absence of spinal cord stimulation was accompanied by strong impulse activity of afferents I (Ia and Ib) and II groups GM, increased excitability of its motorneuron pool and weakening of afferent activity and excitability of TA. On the contrary, electrical stimulation of the spinal cord during walking caused strong impulsive activity of group II TA afferents and moderate — GM, while the activity of Ia fibers TA and GM decreased to moderate impulsivity, Ib afferents of the same muscles had the weakest activity, and the excitability of the GM motorneuron pool was greater than TA. During the postactivation period, walking was accompanied by increased impulses of afferent fibers of group Ib and II GM, weakening of afferent flows of Ib TA and Ia afferents GM, but along with this, afferent signals of group Ia and II to the motorneuron nucleus TA decreased to moderate impulses, and excitability of the motorneuron pool GM was higher than TA. The supposed reflex mechanisms of locomotion regulation are discussed on the basis of well-known phenomena associated with the interaction of various afferent inputs to the spinal cord neuronal apparatus in the system of lower leg antagonist muscles.
Keywords
чрескожная электрическая стимуляция спинного мозга афференты интернейроны спинальное торможение мышцы локомоторные движения
Date of publication
01.01.2024
Year of publication
2024
Number of purchasers
0
Views
18

References

  1. 1. Stachowski N.J., Dougherty K.J. Spinal Inhibitory Interneurons: Gatekeepers of Sensorimotor Pathways // Int. J. Mol. Sci. 2021. V. 22. № 5. P. 2667.
  2. 2. Плещинский И.Н., Алексеева Н.Л. Спинной мозг: афферентные взаимодействия // Физиология человека. 1996. Т. 22. № 1. С. 123.
  3. 3. Prescott S.A., Ma Q., De Koninck Y. Normal and abnormal coding of somatosensory stimuli causing pain // Nat. Neurosci. 2014. V. 17. № 2. Р. 183.
  4. 4. Abraira V.E., Kuehn E.D., Chirila A.M. et al. The Cellular and Synaptic Architecture of the Mechanosensory Dorsal Horn // Cell. 2017. V. 168. № 1–2. Р. 295.
  5. 5. Богачева И.Н., Щербакова Н.А., Гришин А.А., Герасименко Ю.П. Эффекты фазовых сдвигов чрескожной электрической стимуляции спинного мозга на кинематические характеристики шагательных движений у человека // Российский физиологический журнал им. И.М. Сеченова. 2021. Т. 107. № 3. С. 374.
  6. 6. Городничев Р.М., Пухов А.М., Моисеев С.А. и др. Регуляция фаз шагательного цикла при неинвазивной электрической стимуляции спинного мозга // Физиология человека. 2021. Т. 47. № 1. С. 73.
  7. 7. Барканов М.Г., Городничев Р.М. Особенности вызванных мышечных ответов и кинематических параметров скоростных локомоторных движений при чрескожной электрической стимуляции разных зон спинного мозга // Физиология человека. 2022. Т. 48. № 5. С. 49.
  8. 8. Gladchenko D.A., Roshchina L.V., Bogdanov S.M. et al. Effect of transcutaneous electrical spinal cord stimulation on the functional activity of reciprocal and presynaptic inhibition in healthy subjects // Rus. Open Med. J. 2022. V. 11. № 3. P. 302.
  9. 9. Челноков А.А., Рощина Л.В., Гладченко Д.А. и др. Эффект чрескожной электрической стимуляции спинного мозга на функциональную активность спинального торможения в системе мышц-синергистов голени у человека // Физиология человека. 2022. Т. 48. № 2. С. 14.
  10. 10. Яфарова Г.Г., Милицкова А.Д., Шульман А.А. и др. Влияние транскраниальной магнитной стимуляции на ответы мышц голени, вызванные чрескожной электрической стимуляцией спинного мозга // Практическая медицина. 2017. № 8 (109). С. 201.
  11. 11. Benavides F.D., Jo H.J., Lundell H. et al. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia // J. Neuroscience. 2020. V. 40. № 13. P. 2633.
  12. 12. Sayenko D.G., Rath M., Ferguson A.R. et al. Self-assisted standing enabled by non-invasive spinal stimulation after spinal cord injury // J. Neurotrauma. 2019. V. 36. № 9. P. 1435.
  13. 13. Milosevic M., Masugi Y., Sasaki A. et al. On the reflex mechanisms of cervical transcutaneous spinal cord stimulation in human subjects // J. Neurophysiol. 2019. V. 121. № 5. P. 1672.
  14. 14. Barss T.S., Parhizi B., Porter J., Mushahwar V.K. Neural Substrates of Transcutaneous Spinal Cord Stimulation: Neuromodulation across Multiple Segments of the Spinal Cord // J. Clin. Med. 2022. V. 11. № 3. Р. 639.
  15. 15. Команцев В.Н. Методические основы клинической электронейромиографии. Руководство для врачей. СПб.: Лань, 2006. 362 с.
  16. 16. Prochazka A., Gorassini M. Ensemble firing of muscle afferents recorded during normal locomotion in cats // J. Physiol. 1998. V. 507. Pt. 1. Р. 293.
  17. 17. Mileusnic M.P., Loeb G.E. Force estimation from ensembles of Golgi tendon organs // J. Neural. Eng. 2009. V. 6. № 3. Р. e036001.
  18. 18. Enoka R.M. Neuromechanics of Human Movement. Champaign, IL, United States: Human Kinetics, 2015. 504 p.
  19. 19. Gervasio S., Voigt M., Kersting U.G. et al. Sensory Feedback in Interlimb Coordination: Contralateral Afferent Contribution to the Short-Latency Crossed Response during Human Walking // PLoS One. 2017. V. 12. № 1. Р. e0168557.
  20. 20. Бикмуллина Р.X., Розенталъ А.Н., Плещинский И.Н. Тормозные системы спинного мозга в контроле взаимодействий функционально сопряженных мышц // Физиология человека. 2007. Т. 33. № 1. С. 119.
  21. 21. Pierrot-Deseilligny E., Burke D. The Circuitry of the human spinal cord: spinal and corticospinal mechanisms of movement. United States: Cambridge University Press, 2012. 606 p.
  22. 22. Pierrot-Deseilligny E. Assessing changes in presynaptic inhibition of Ia afferents during movement in humans // J. Neurosci. Methods. 1997. V. 74. № 2. Р. 189.
  23. 23. Kido A., Tanaka N., Stein R.B. Spinal reciprocal inhibition in human locomotion // J. Appl. Physiol. 2004. V. 96. № 5. Р. 1969.
  24. 24. Mummidisetty C.K., Smith A.C., Knikou M. Modulation of reciprocal and presynaptic inhibition during robotic-assisted stepping in humans // Clin. Neurophysiol. 2013. V. 124. № 3. P. 557.
  25. 25. Челноков А.А., Бучацкая И.Н. Функциональные особенности спинального торможения человека при произвольной двигательной активности // Теория и практика физической культуры. 2015. № 6. С. 11.
  26. 26. Stephens M.J., Yang J.F. Short latency, non-reciprocal group I inhibition is reduced during the stance phase of walking in humans // Brain Res. 1996. V. 743. № 1-2. Р. 24.
  27. 27. Faist M., Hoefer C., Hodapp M. et al. In humans Ib facilitation depends on locomotion while suppression of Ib inhibition requires loading // Brain Res. 2006. V. 1076. № 1. P. 87.
  28. 28. Pierrot-Deseilligny E., Morin C., Bergego C. et al. Pattern of group I fibre projections from ankle flexor and extensor muscle in man // Exp. Brain Res. 1981. V. 42. № 3–4. P. 337.
  29. 29. Rossi A., Decchi B. Changes in Ib heteronymous inhibition to soleus motoneurons during cutaneous and muscle nociceptive stimulation in humans // Brain Res. 1997. V. 774. № 1–2. P. 55.
  30. 30. Côté M.P., Murray L.M., Knikou M. Spinal Control of Locomotion: Individual Neurons, Their Circuits and Functions // Front. Physiol. 2018. V. 9. Р. 784.
  31. 31. Labrecque C., Bélanger M. The effects of low intensity cutaneous stimulation on the H-reflex modulation during static and dinamic cycling movements // Dept de Kinanthropologie Society for neurosciens abstracts. 1994. V. 20. № 715. Р. 7.
  32. 32. Day B., Marsden C., Rothwell J.C. et al. Cutaneous effects on presynaptic inhibition of flexor Ia afferents in the human forearm // J. Physiol. 1987. V. 344. P. 160.
  33. 33. Gerasimenko Y., Gorodnichev R., Machueva E. et al. Novel and direct access to the human locomotor spinal circuitry // J. Neurosci. 2010. V. 30. № 10. P. 3700.
  34. 34. Городничев Р.М., Пивоварова Е.А., Пухов А.М. и др. Чрескожная электрическая стимуляция спинного мозга: неинвазивный способ активации генераторов шагательных движений у человека // Физиология человека. 2012. Т. 38. № 2. С. 46.
  35. 35. Gerasimenko Y.P., Gad P., Sayenko D. et al. Integration of Sensory, Spinal, and Volitional Descending Inputs in Regulation of Human Locomotion // J. Neurophysiol. 2016. V. 116. № 1. P. 98.
  36. 36. Yamaguchi T., Fujiwara T., Takahara T. et al. The effects of transcutaneous spinal cord stimulation on spinal reciprocal inhibition in healthy persons // Clin. Neurophysiol. 2017. V. 128. № 3. Р. 115.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library