RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Event-Related Brain Potentials when Comparing Visual Stimuli – Words and Pictures

PII
S30346150S0131164625040035-1
DOI
10.7868/S3034615025040035
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 4
Pages
34-49
Abstract
The goal of this paper was studying neurophysiological processes in the brain during presentation of visual stimuli (printed words and pictures). 84 participants took part in the investigation. The article presents the results of the analysis of event related potentials (ERP) in a three-stimulus visual test. In the time interval 80-280 ms after the second stimulus, ERP components were recorded: N1O in the occipital area, and N1T and P2 in the posterior temporal lobes. The N1O, N1T, P2 waves in response to the second word-stimulus differed in amplitude and latency from the waves in response of the image-stimulus. No difference in ERP in the posterior temporal and occipital components N1O, N1T, P2 between match and mismatch conditions in words comparison was found. We infer that the operation of comparing two words is not reflected all measured ERP waves. In response to the second picture-stimulus the amplitude of the occipital and posterior temporal components N1O, N1T was greater when the stimuli matched the first stimulus. We conclude that the recorded difference wave indicates facilitation operation during the perception when the predicted signal matches the actual input signal. In summary, the modulation of the posterior temporal P2 wave in response to the second mismatched picture-stimulus in the pairs is caused by two hypothetical psychological operations: physical repetition of the stimulus, and mismatch with the image in the working memory.
Keywords
рабочая память сравнение слов и изображений ЭЭГ связанные с событиями потенциалы (ПСС) P2 N170
Date of publication
01.08.2025
Year of publication
2025
Number of purchasers
0
Views
42

References

  1. 1. Баклушев М.Е., Иваницкий Г.А. Дискретность и континуальность информации в сознании // Усп. физиол. наук. 2021. T. 52. № 1. С. 77.
  2. 2. The Oxford handbook of event-related potential components / Eds. Luck S.J., Kappenman E.S. Oxford: Oxford University Press, 2011. 642 p.
  3. 3. Кропотов Ю.Д. Количественная ЭЭГ, когнитивные вызванные потенциалы мозга человека и нейротерапия. Донецк: Издатель Заславский Ю.А., 2010. 512 с.
  4. 4. Woldorff M.G., Liotti M., Seabolt M. et al. The temporal dynamics of the effects in occipital cortex of visual-spatial selective attention // Brain Res. Cogn. Brain Res. 2002. V. 15. № 1. P. 1.
  5. 5. Ahmadi M., McDevitt E.A., Silver M.A., Mednick S.C. Perceptual learning induces changes in early and late visual evoked potentials // Vision Res. 2018. V. 152. P. 101.
  6. 6. Joyce C., Rossion B. The face-sensitive N170 and VPP components manifest the same brain processes: The effect of reference electrode site // Clin. Neurophysiology. 2005. V. 116. № 11. P. 2613.
  7. 7. Stahl J., Wiese H., Schweinberger S.R. Learning task affects ERP-correlates of the own-race bias, but not recognition memory performance // Neuropsychologia. 2010. V. 48. № 7. P. 2027.
  8. 8. He J., Zheng Y., Fan L. et al. Automatic processing advantage of cartoon face in internet gaming disorder: Evidence from P100, N170, P200, and MMN // Front. Psychiatry. 2019. V. 10. P. 824.
  9. 9. Male A.G., O'Shea R.P., Schröger E. et al. The quest for the genuine visual mismatch negativity (vMMN): Event-related potential indications of deviance detection for low-level visual features // Psychophysiology. 2020. V. 57. № 6. P. e13576.
  10. 10. Amsel B.D., Urbach T.P., Kutas M. Alive and grasping: Stable and rapid semantic access to an object category but not object graspability // Neuroimage. 2013. V. 15. № 77. P. 1.
  11. 11. Sauseng P., Bergmann J., Wimmer H. When does the brain register deviances from standard word spellings?--An ERP study // Brain Res. Cogn. Brain Res. 2004. V. 20. № 3. P. 529.
  12. 12. Amora K.K., Tretow A., Verwimp C. et al. Typical and atypical development of visual expertise for print as indexed by the Visual Word N1 (N170w): A systematic review // Front. Neurosci. 2022. V. 16. P. 898800.
  13. 13. Гальперина Е.И., Нагорнова Ж.В., Шемякина Н.В., Корнев А.Н. Психофизиологические механизмы начального этапа овладения чтением. Часть I // Физиология человека. 2022. Т. 48. № 2. С. 99.
  14. 14. Никишена И.С., Пономарев В.А., Кропотов Ю.Д. Связанные с событиями потенциалы мозга человека при сравнении зрительных стимулов // Физиология человека. 2023. Т. 49. № 3. С. 67.
  15. 15. Никишена И.С., Пономарев В.А., Кропотов Ю.Д. Потенциалы, связанные с событиями в тесте на сравнение пар слов в зрительной и слуховой модальности // Физиология человека. 2021. Т. 47. № 4. С. 115.
  16. 16. Кропотов Ю.Д., Пономарев В.А., Пронина М.В., Полякова Н.В. Эффекты повторения и рассогласования стимулов в сенсорных зрительных компонентах потенциалов, связанных с событиями // Физиология человека. 2019. Т. 45. № 4. С. 5.
  17. 17. Vigário R.N. Extraction of ocular artifacts from EEG using independent component analysis // Electroencephalogr. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
  18. 18. Dong L., Li F., Liu Q. et al. MATLAB toolboxes for Reference Electrode Standardization Technique (REST) of scalp EEG // Front. Neurosci. 2017. V. 11. P. 601.
  19. 19. Hu S., Lai Y., Valdes-Sosa P.A. et al. How do reference montage and electrodes setup affect the measured scalp EEG potentials? // J. Neural. Eng. 2018. V. 15. № 2. P. 026013.
  20. 20. Perrin F., Pernier J., Bertrand O., Echallier J.F. Spherical splines for scalp potential and current density mapping // Electroencephalogr. Clin. Neurophysiol. 1989. V. 72. № 2. P. 184.
  21. 21. 21 Kayser J., Tenke C.E. Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks // Clin. Neurophysiol. 2006. V. 117. P. 348.
  22. 22. Maris E., Oostenveld R. Nonparametric statistical testing of EEGand MEG-data // J. Neurosci. Methods. 2007. V. 164. № 1. P. 177.
  23. 23. Pernet C.R., Latinus M., Nichols T.E., Rousselet G.A. Cluster-based computational methods for mass univariate analyses of event-related brain potentials/fields: A simulation study // J. Neurosci. Methods. 2015. V. 250. P. 85.
  24. 24. Tartaglia E.M., Mongillo G., Brunel N. On the relationship between persistent delay activity, repetition enhancement and priming // Front. Psychol. 2015. V. 5. P. 1590.
  25. 25. Caharel S., Rossion B. The N170 is sensitive to long-term (personal) familiarity of a face identity // Neuroscience. 2021. V. 15. P. 244.
  26. 26. Rossion B., Jacquesm C. The N170: Understanding the time course of face perception in the human brain / The Oxford handbook of event-related potential components // Eds. Luck S.J., Kappenman E.S. Oxford University Press, 2012. P. 115.
  27. 27. Prieto E. A., Caharel S., Henson R., Rossion B. Early (N170/M170) face-sensitivity despite right lateral occipital brain damage in acquired prosopagnosia // Front. Hum. Neurosci. 2011. V. 5. P. 138.
  28. 28. Thierry G., Martin C. D., Downing P.E., Pegna A.J. Is the N170 sensitive to the human face or to several intertwined perceptual and conceptual factors? // Nat. Neurosci. 2007. V. 10. P. 802.
  29. 29. Thierry G., Martin C., Downing P. et al. Controlling for interstimulus perceptual variance abolishes N170 face selectivity // Nat. Neurosci. 2007. V. 10. № 4. P. 505.
  30. 30. Tanaka H. Face-sensitive P1 and N170 components are related to the perception of twodimensional and three-dimensional objects // Neuroreport. 2018. V. 29. № 7. P. 583.
  31. 31. Jones T., Hadley H., Cataldo A.M. et al. Neural and behavioral effects of subordinate-level training of novel objects across manipulations of color and spatial frequency // Eur. J. Neurosci. 2020. V. 52. № 11. P. 4468.
  32. 32. Nan W., Liu Y., Zeng X. et al. The spatiotemporal characteristics of N170s for faces and words: A meta-analysis study // Psych. J. 2022. V. 11. № 1. P. 5.
  33. 33. Fu S., Feng C., Guo S. et al. Neural adaptation provides evidence for categorical differences in processing of faces and Chinese characters: An ERP study of the N170 // PLoS One. 2012. V. 7. № 7. P. e41103.
  34. 34. Enge A., Süß F., Abdel Rahman R. Instant effects of semantic information on visual perception // J. Neurosci. 2023. V. 43. № 26. P. 4896.
  35. 35. Clarke A., Pell P.J., Ranganath C., Tyler L.K. Learning warps object representations in the ventral temporal cortex // J. Cogn. Neurosci. 2016. V. 28. № 7. P. 1010.
  36. 36. Kropotov J.D., Ponomarev V.A. Differentiation of neuronal operations in latent components of event-related potentials in delayed match-to-sample tasks // Psychophysiology. 2015. V. 52. № 6. P. 826.
  37. 37. Kropotov J.D., Ponomarev V.A., Pronina M., Jäncke L. Functional indexes of reactive cognitive control: ERPs in cued go/no-go tasks // Psychophysiology. 2017. V. 54. № 12. P. 1899.
  38. 38. Kimura M. Visual mismatch negativity and unintentional temporal-context-based prediction in vision // Int. J. Psychophysiol. 2012. V. 83. № 2. P. 144.
  39. 39. Freunberger R., Klimesch W., Doppelmayr M., Höller Y. Visual P2 component is related to theta phase-locking // Neurosci. Lett. 2007. V. 426. № 3. P. 181.
  40. 40. Clark A. Whatever next? Predictive brains, situated agents, and the future of cognitive science // Behav. Brain Sci. 2013. V. 36. № 3. P. 181.
  41. 41. den Ouden C., Zhou A., Mepani V. et al. Stimulus expectations do not modulate visual event-related potentials in probabilistic cueing designs// Neuroimage. 2023. V. 280. P. 120347.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library