- PII
- S30346150S0131164625040025-1
- DOI
- 10.7868/S3034615025040025
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 4
- Pages
- 14-33
- Abstract
- The study is dedicated to the investigation of EEG spectral characteristics during resting states and a creative task performance (Alternative Uses Task, AUT) before and after a single session of neurofeedback (NFB) and sham-NFB training. The study involved 24 adolescents (aged 15–17 years) who were randomly divided into two independent groups both with 12 subjects. The test group (TEST) participated in one session of NFB training based on their own EEG data (power of individual alpha frequency), while the control group (SHAM) participated in one session of sham-NFB training. Spectral power in the Δ (1.5–4 Hz)-, θ (4–8 Hz)-, α1 (8–10 Hz)-, α2 (10–13 Hz)-, β1 (13–18 Hz)-, β2 (18–30 Hz)-bands of the EEG during eyes open and closed resting states, and event-related synchronisation/desynchronisation of the EEG during performance of the alternative use task before and after the NFB/SHAM session were analysed. Prior to the NFB/SHAM sessions, no differences were observed between the groups in the resting state EEG. After the NFB/SHAM session, lower EEG power values in the β2-band were observed in the test group compared to the control group in the eyes-closed condition. There was a decrease in Δ-band EEG power in frontal temporal regions in the eyes-closed condition and an increase in α2-band power in the eyes-open condition after the NFB session compared to a condition before the NFB session. In the control group, no differences in EEG spectral power were observed in the states AFTER vs. BEFORE the SHAM session. Analysis of event-related EEG synchronisation/desynchronisation during the AUT before and after the NFB session revealed no differences between the test and control groups. Intragroup comparisons of AFTER vs. BEFORE NFB/SHAM sessions revealed the following different effects: in the test group, first, EEG desynchronisation in the frequency range 17.5–30 Hz was observed in the frontal regions of the left hemisphere in the interval 220–300 ms after the presentation of the stimulus, and subsequently, there was synchronisation in the θ and low-frequency α electroencephalogram (EEG) ranges (4–9.8 Hz) (in the interval 540–1400 ms) with maximum differences in the frontal regions. The control group was characterised by synchronisation of electroencephalogram (EEG) activity in the higher frequency ranges of 9.5–26 Hz and in the narrower time interval of 520–760 ms in central and frontal electrodes. Consequently, a single NFB session in the test group resulted in changes in EEG spectral power during resting states that were not observed in the control (SHAM) group following sham training, and exhibited precise modulation of the state during creative activity.
- Keywords
- творческая деятельность нейробиоуправление /биологическая обратная связь ЭЭГ ВП AUT
- Date of publication
- 01.08.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 49
References
- 1. Guilford J.P. The structure of intellect // Psychol. Bull. 1956. V. 53. № 4. P. 267.
- 2. Guilford J.P., Christensen P.R., Merrifield P.R., Wil-son R.C. Alternate uses: Manual of instructions and interpretations. Orange, CA: Sheridan Psychological Services, 1978. 24 p.
- 3. Guilford J.P. The nature of human intelligence. McGraw-Hill, 1967. P. 538.
- 4. Runco M.A., Jaeger G.J. The standard definition of creativity // Creat. Res. J. 2012. V. 24. № 1. P. 92.
- 5. Sternberg R.J., Lubart T.I. The concept of creativity: Prospects and paradigms / Handbook of creativity. Ed. Sternberg R.J. Cambridge: Cambridge University Press, 1999. P. 3.
- 6. Bechtereva N.P., Shemyakina N.V., Starchenko M.G. et al. Error detection mechanisms of the brain: Back ground and prospects // Int. J. Psychophysiol. 2005. V. 5. № 2–3. P. 227.
- 7. Шемякина Н.В., Данько С.Г., Нагорнова Ж.В. и др. Динамика спектров мощности и когерентности ритмических компонентов ЭЭГ при решении вербальной творческой задачи преодоления стереотипа // Физиология человека. 2007. Т. 33. № 5. С. 14.
- 8. Camarda A., Salvia É., Vidal J. et al. Neural basis of functional fixedness during creative idea generation: An EEG study // Neuropsychologia. 2018. V. 118. Pt. A. P. 4.
- 9. Fink A., Graif B., Neubauer A.C. Brain correlates underlying creative thinking: EEG alpha activity in professional vs. novice dancers // NeuroImage. 2009. V. 46. № 3. P. 854.
- 10. Fink A., Schwab D., Papousek I. Sensitivity of EEG upper alpha activity to cognitive and affective creativity interventions // Int. J. Psychophysiol. 2011. V. 82. № 3. P. 233.
- 11. Kröger S., Rutter B., Hill H. et al. An ERP study of passive creative conceptual expansion using a modified alternate uses task // Brain Res. 2011. V. 1527. P. 189.
- 12. Kraus B., Cadle C., Simon-Dack S. EEG alpha activity is moderated by the serial order effect during divergent thinking // Biol. Psychol. 2019. V. 145. P. 84.
- 13. Stevens C.E., Jr., Zabelina D.L. Classifying creativity: Applying machine learning techniques to divergent thinking EEG data // NeuroImage. 2020. V. 219. P. 116990.
- 14. Rominger C., Gubler D.A., Makowski L.M., Troche S.J. More creative ideas are associated with increased right posterior power and frontal-parietal/occipital coupling in the upper alpha band: A within-subjects study // Int. J. Psychophysiol. 2022. V. 181. P. 95.
- 15. Нагорнова Ж.В., Галкин В.А., Васенькина В.А. и др. Нейрофизиологические характеристики придумывания альтернативного использования по данным анализа вызванных потенциалов (ВП) и связанной с событиями синхронизации/десинхронизации ЭЭГ в зависимости от уровня продуктивности и оригинальности испытуемых // Физиология человека. 2022. Т. 48. № 6. С. 3.
- 16. Нагорнова Ж.В., Шемякина Н.В. Влияние условий сотрудничества на амплитуды вызванных потенциалов при творческой и нетворческой деятельности // Журнал эволюционной биохимии и физиологии. 2024. Т. 60. № 1. С. 105.
- 17. Mazza A., Dal Monte O., Schintu S. et al. Beyond alpha-band: The neural correlate of creative thinking // Neuropsychologia. 2023. V. 179. P. 108446.
- 18. Bartoli E., Devara E., Dang H. Q. et al. Default mode network electrophysiological dynamics and causal role in creative thinking // Brain. 2024. V. 147. № 10. P. 3409.
- 19. Fink A., Grabner R.H., Benedek M., Neubauer A.C. Divergent thinking training is related to frontal electroencephalogram alpha synchronization // Eur. J. Neurosci. 2006. V. 23. № 8. P. 2241.
- 20. Luft C.D.B., Zioga I., Thompson N.M. et al. Right temporal alpha oscillations as a neural mechanism for inhibiting obvious associations // Proc. Natl. Acad. Sci. U.S.A. 2018. V. 115. № 52. P. E12144.
- 21. Mednick S.A., Mednick M.T. Manual, the remote associates test, Form I. Boston, Mass.: Houghton-Mifflin, 1967. P. 32.
- 22. Benedek M., Bergner S., Könen T. et al. EEG alpha synchronization is related to top-down processing in convergent and divergent thinking // Neuropsychologia. 2011. V. 49. № 12. P. 3505.
- 23. Mölle M., Marshall L., Wolf B. et al. EEG complexity and performance measures of creative thinking // Psychophysiology. 1999. V. 36. № 1. P. 95.
- 24. Штарк М.Б., Василевский Н.Н. Биоуправление: теория и практика. Новосибирск: Наука, Сибир. отд-ние, 1988. 168 с.
- 25. Сороко С.И., Трубачев В.В. Нейрофизиологические и психофизиологические основы адаптивного биоуправления. СПб.: Политехника-сервис, 2010. 607 с.
- 26. Loriette C., Ziane C., Ben Hamed S. Neurofeedback for cognitive enhancement and intervention and brain plasticity // Rev. Neurol. 2021. V. 177. № 9. P. 1133.
- 27. Katkin E.S., Fitzgerald C.R., Shapiro D. Clinical applications of biofeedback: Current status and future prospects / Psychology: From research to practice // Eds. Pick H.L., Leibowitz H.W., Singer J.E., Steinschneider A., Stevenson H.W. Boston, MA: Springer, 1978. P. 243.
- 28. Rogala J., Jurewicz K., Paluch K. et al. The do's and don'ts of neurofeedback training: A review of the controlled studies using healthy adults // Front. Hum. Neurosci. 2016. V. 10. P. 301.
- 29. Enriquez-Geppert S., Huster R.J., Herrmann C.S. EEG-neurofeedback as a tool to modulate cognition and behavior: A review tutorial // Front. Hum. Neurosci. 2017. V. 11. P. 51.
- 30. Rahmati N., Rostami R., Zali M.R. et al. The effectiveness of neurofeedback on enhancing cognitive process involved in entrepreneurship abilities among primary school students in district No. 3 Tehran // Basic Clin. Neurosci. 2014. V. 5. № 4. P. 277.
- 31. Egner T., Gruzelier J.H. Ecological validity of neurofeedback: Modula tion of slow wave EEG enhances musical performance // Neuroreport. 2003. V. 14. № 9. P. 1225.
- 32. Gruzelier J.H. EEG-neurofeedback for optimising performance. II: creativity, the performing arts and ecological validity // Neurosci. Biobehav. Rev. 2014. V. 44. P. 142.
- 33. Agnoli S., Zanon M., Mastria S. et al. Enhancing creative cognition with a rapid right-parietal neurofeedback procedure // Neuropsychologia. 2018. V. 118. Pt. A. P. 99.
- 34. Boynton T. Applied research using alpha/theta training for enhancing creativity and well-being // J. Neurother. 2001. V. 5. № 1–2. P. 5.
- 35. Klimesch W., Schimke H., Pfurtscheller G. Alpha frequency, cognitive load and memory performance // Brain Topogr. 1993. V. 5. № 3. P. 241.
- 36. Barry R.J., Clarke A.R., Johnstone S.J. еt al. EEG differences between eyes-closed and eyes-open resting conditions // Clin. Neurophysiol. 2007. V. 118. № 12. P. 2765.
- 37. Klimesch W., Sauseng P., Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis // Brain Res. Rev. 2007. V. 53. № 1. P. 63.
- 38. Nunez P., Wingeier B., Silberstein R. Spatial-temporal structures of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and global binding of networks // Hum. Brain Mapp. 2001. V. 13. № 3. P. 125.
- 39. Базанова О.М. Современная интерпретация альфа-активности ЭЭГ // Междунар. неврол. журн. 2011. № 8. С. 96.
- 40. Li B.Z., Nan W., Pun S.H. et al. Modulating individual alpha frequency through short-term neurofeedback for cognitive enhancement in healthy young adults // Brain Sci. 2023. V. 13. № 6. P. 926.
- 41. Zoefel B., Huster R.J., Herrmann C.S. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance // NeuroImage. 2011. V. 54. № 2. P. 1427.
- 42. Nan W., Rodrigues J.P., Ma J. et al. Individual alpha neurofeedback training effect on short term memory // Int. J. Psychophysiol. 2012. V. 86. № 1. P. 83.
- 43. Bobby J.S., Prakash S. Upper alpha neurofeedback training enhances working memory performance using LabVIEW // Int. J. Biomed. Eng. Technol. 2017. V. 25. № 2-4. P. 120.
- 44. Enriquez-Geppert S., Huster R.J., Figge C., Herrmann C.S. Self-regulation of frontal-midline theta facilitates memory updating and mental set shifting // Front. Behav. Neurosci. 2014. V. 8. P. 420.
- 45. Escolano C., Navarro-Gil M., Garcia-Campayo J., Minguez J. The effects of a single session of upper alpha neurofeedback for cognitive enhancement: A sham-controlled study // Appl. Psychophysiol. Biofeedback. 2014. V. 39. № 3-4. P. 227.
- 46. Карвасарский Б.Д. Клиническая психология: учебник. СПб.: Питер, 2004. 960 с.
- 47. Witkin H.A., Oltman P.K., Raskin E., Karp S.A. A manual for the embedded figures tests. Palo Alto, CA: Consulting Psychologists Press, 1971. P. 15.
- 48. Raven J., Raven J. Raven Progressive Matrices / Handbook of nonverbal assessment // Ed. McCallum R.S. Plenum Publishers, 2003. P. 223.
- 49. Равен М., Стайл И. Стандартные плюс прогрессивные матрицы Равена (серии А, В, С, D, Е). М.: Когито-Центр, 2001. 64 с.
- 50. Воронин А.Н., Галкина Т.В. Диагностика вербальной креативности (адаптация теста Медника) // Методы психологической диагностики. 1994. № 2. С. 40.
- 51. Туник Е.Е. Диагностика креативности. Тест Е. Торренса. Адаптированный вариант. СПб.: Речь, 2006. 176 с.
- 52. Котик М.А. Психология и безопасность. Таллинн: Валгус, 1989. 440 с.
- 53. Андреева А.Д., Прихожан А.М. Методика диагностики мотивации учения и эмоционального отношения к учению в средних и старших классах школы // Психологическая диагностика. 2006. № 1. С. 33.
- 54. Vigario R.N. Extraction of ocular artefacts from EEG using independent component analysis // Electroencephalogr. Clin. Neurophysiol. 1997. V. 103. № 3. P. 395.
- 55. Jung T.P., Makeig S., Westerfield M. et al. Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects // Clin. Neurophysiol. 2000. V. 111. № 10. P. 1745.
- 56. Терещенко Е.П., Пономарев В.А., Кропотов Ю.Д., Мюллер А. Сравнение эффективности различных методов удаления артефактов морганий при анализе количественной электроэнцефалограммы и вызванных потенциалов // Физиология человека. 2009. Т. 35. № 2. С. 124.
- 57. Bendat J.C., Piersol A.G. Random data: Analysis and measurement procedures. 2nd ed. New York, NY, USA: John Wiley & Sons, 1986. P. 592.
- 58. Greenhouse S.W., Geisser S. On methods in the analysis of profile data // Psychometrika. 1959. V. 24. P. 95.
- 59. Tallon-Baudry C., Bertrand O. Oscillatory gamma activity in humans and its role in object representation // Trends Cogn. Sci. 1999. V. 3. № 4. P. 151.
- 60. Maris E., Oostenveld R. Nonparametric statistical testing of EEGand MEG-data // J. Neurosci. Methods. 2007. V. 164. № 1. P. 177.
- 61. Пронина М.В., Пономарев В.А., Кропотов Ю.Д. Влияние сложности задачи на величину синхронизации ЭЭГ активности бета-диапазона в сенсомоторной коре // Рос. физиол. ж. им. И.М. Сеченова. 2022. Т. 108. № 11. С. 1442.
- 62. Никишена И.С., Пономарев В.А., Кропотов Ю.Д. Связанные с событиями потенциалы мозга человека при сравнении зрительных стимулов // Физиология человека. 2023. Т. 49. № 3. С. 67.
- 63. Alaraj M., Fukami T. Quantitative evaluation for the wakefulness state using complexity-based decision threshold value in EEG signals / 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Osaka, Japan, July 3–7, 2013. P. 6175. DOI: 10.1109/EMBC.2013.6610963
- 64. Altınkaynak M., Yeşilbaş D., Batbat T. et al. Multimodal analysis of cortical activation in young male adults with internet gaming disorder: A resting state EEG-fNIRS study // J. Psychiatr. Res. 2024. V. 177. P. 368.
- 65. Ali A., Afridi R., Soomro T.A. et al. A single-channel wireless EEG headset enabled neural activities analysis for mental healthcare applications // Wirel. Pers. Commun. 2022. V. 125. № 4. P. 3699.
- 66. Kim D.K., Rhee J.H., Kang S.W. Reorganization of the brain and heart rhythm during autogenic meditation // Front. Integr. Neurosci. 2024. V. 7. P. 109.
- 67. Marzbani H., Marateb H.R., Mansourian M. Neurofeedback: A Comprehensive Review on System Design, Methodology and Clinical Applications // Basic Clin. Neurosci. 2016. V. 7. № 2. P. 143.
- 68. Hanslmayr S., Sauseng P., Doppelmayr M. et al. Increasing individual upper alpha power by neurofeedback improves cognitive performance in human subjects // Appl. Psychophysiol. Biofeedback. 2005. V. 30. № 1. P. 1.
- 69. Klimesch W. EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis // Brain Res. Brain Res. Rev. 1999. V. 29. № 2–3. P. 169.
- 70. Knyazev G.G. EEG delta oscillations as a correlate of basic homeostatic and motivational processes // Neurosci. Biobehav. Rev. 2012. V. 36. № 1. P. 677.
- 71. Kiroy V.N., Warsawskaya L.V., Voynov V.B. EEG after prolonged mental activity // Int. J. Neurosci. 1996. V. 85. № 1–2. P. 31.
- 72. Lal S.K.L., Craig A. Driver fatigue: Electroence-phalography and psychological assessment // Psycho-physiology. 2002. V. 39. № 3. P. 313.
- 73. Lal S.K.L., Craig A. Reproducibility of the spectral components of the electroencephalogram during driver fatigue // Int. J. Psychophysiol. 2005. V. 55. № 2. P. 137.
- 74. Lapomarda G., Valer S., Job R. et al. Built to last: Theta and delta changes in resting-state EEG activity after regulating emotions // Brain Behav. 2022. V. 12. № 6. P. e2598.
- 75. Aldemir R., Demirci E., Per H. et al. Investigation of attention deficit hyperactivity disorder (ADHD) sub-types in children via EEG frequency domain analysis // Int. J. Neurosci. 2018. V. 128. № 4. P. 349.
- 76. Wang H., Hou Y., Zhan S. et al. EEG biofeedback decreases theta and beta power while increasing alpha power in insomniacs: An open-label study // Brain Sci. 2023. V. 13. № 11. P. 1542.
- 77. Ozga W.K., Zapała D., Wierzgała P. et al. Acoustic neurofeedback increases beta ERD during mental rotation task // Appl. Psychophysiol. Biofeedback. 2019. V. 44. № 2. P. 103.
- 78. Gilhooly K.J., Fioratou E., Anthony S.H., Wynn V. Divergent thinking: strategies and executive involvement in generating novel uses for familiar objects // Br. J. Psychol. 2007. V. 98. P. 611.
- 79. Klimesch W., Schimke H., Schwaiger J. Episodic and semantic memory: an analysis in the EEG theta and alpha band // Electroencephalogr. Clin. Neurophysiol. 1994. V. 91. № 6. P. 428.
- 80. Sauseng P., Klimesch W., Schabus M., Doppelmayr M. Fronto-parietal EEG coherence in theta and upper alpha reflect central executive functions of working memory // Int. J. Psychophysiol. 2005. V. 57. № 2. P. 97.
- 81. Knyazev G.G. Motivation, emotion, and their inhibitory control mirrored in brain oscillations // Neurosci. Biobehav. Rev. 2007. V. 31. № 3. P. 377.
- 82. Cooper N.R., Burgess A.P., Croft R.J., Gruzelier J.H. Investigating evoked and induced electroencephalogram activity in task-related alpha power increases during an internally directed attention task // Neuroreport. 2006. V. 17. № 2. P. 205.
- 83. Русалова М.Н., Костюнина М.Б. Частотно-амплитудные характеристики левого и правого полушарий при мысленном воспроизведении эмоционально окрашенных образов // Физиология человека. 1999. T. 25. № 5. C. 50.
- 84. Fink A., Benedek M. EEG alpha power and creative ideation // Neurosci. Biobehav. Rev. 2014. V. 44. № 100. P. 111.
- 85. Ray W.J., Cole H.W. EEG alpha activity reflects attentional demands, and beta activity reflects emotional and cognitive processes // Science. 1985. V. 228. № 4700. P. 750.
- 86. Cooper N.R., Croft R.J., Dominey S.J. et al. Paradox lost? Exploring the role of alpha oscillations during externally vs. internally directed attention and the implications for idling and inhibition hypotheses // Int. J. Psychophysiol. 2003. V. 47. № 1. P. 65.
- 87. Lubar J.F. Discourse on the development of EEG diagnostics and biofeedback for attention-deficit/hyperactivity disorders // Biofeedback Self Regul. 1991. V. 16. № 3. P. 201.
- 88. Kamiński J., Brzezicka A., Gola M., Wróbel A. Beta band oscillations engagement in human alertness process. International // Int. J. Psychophysiol. 2012. V. 85. № 1. P. 125.