- PII
- S3034615025030124-1
- DOI
- 10.7868/S3034615025030124
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 51 / Issue number 3
- Pages
- 125-136
- Abstract
- At present, the mechanisms of human adaptation to the action of weightlessness, which humans, as a biological species, have encountered only recently, continue to be intensively studied. Understanding the mechanisms of human adaptation to weightlessness allows us to propose ways of modulating this process with preservation of useful adaptive reactions against the background of suppression of negative syndromes characteristic of space flight and inhibition of mechanisms preventing favorable functioning of physiological systems after returning to the conditions of gravity. One of the integral components of the system of countermeasure of the negative influence of weightlessness is artificial reproduction of the effects of gravity, i.e. imitation of the impact on the human body of the weight load characteristic of the Earth conditions. The article considers the role of artificial reproduction of the effects of the weight load corresponding in value to the weight of the human body before the space flight. The article tests the hypothesis about the possibility of modulation of adaptation processes to weightlessness conditions by providing the necessary sensory inflow to the receptors of gravity-dependent physiological systems and its influence on the processes of re-adaptation to Earth conditions. The “weight” loading used during the flight was analyzed, as well as the data of pre-flight, flight and post-flight tests on the performance of 10 cosmonauts who performed long space flights with an average duration of 173 ± 33 days. It is shown that regular reproduction of the effects of weight load corresponding to the human body mass on Earth allows to modulate the process of human adaptation to weightlessness.
- Keywords
- длительный космический полет система профилактики кардиореспираторное нагрузочное тестирование ступенчато-возрастающая нагрузка изокинетическое тестирование имитация весовой нагрузки
- Date of publication
- 02.06.2025
- Year of publication
- 2025
- Number of purchasers
- 0
- Views
- 45
References
- 1. Gunga H.C. Human physiology in extreme environments. Academic Press. London, 2020. 349 p.
- 2. Айдаралиев А.А., Максимов А.Л. Адаптация человека к экстремальным условиям: Опыт прогнозирования. Санкт-Петербург: «Наука», 1988. 126 c.
- 3. Оппедизано М., Луиджиевич Д., Артюх Л.Ю. Адаптация человека к экстремальным условиям деятельности. Физиологические механизмы (структурный след адаптации) // Forcipe. 2021. T. 4. № 4. C. 18.
- 4. Медведев Д.В., Суслина И. Физиологические факторы, обусловливающие физическую работоспособность человека на разных этапах адаптации к мышечной деятельности // Фундаментальные исследования. 2012. № 9-4. C. 820.
- 5. Norsk P. Adaptation of the cardiovascular system to weightlessness: surprises, paradoxes and implications for deep space missions // Acta Physiol. 2020. V. 228. № 3. P. e13434.
- 6. Trudel G., Shahin N., Ramsay T. et al. Hemolysis contributes to anemia during long-duration space flight // Nat. Med. 2022. V. 28. № 1. P. 59.
- 7. Scott J.M., Stoudemire J., Dolan L., Downs M. Leveraging spaceflight to advance cardiovascular research on earth // Circulat. Res. 2022. V. 130. № 6. P. 942.
- 8. Grigor’ev A., Orlov O., Baranov V. Space medicine: Scientific foundations, achievements, and challenges // Her.Russ. Acad. Sci. 2021. V. 91. № 6. P. 626.
- 9. Stavnichuk M., Mikolajewicz N., Corlett T. et al. A systematic review and meta-analysis of bone loss in space travelers // NPJ Microgravity. 2020. V. 6. № 1. P. 13.
- 10. Твердохлиб В.П., Твердохлиб Д.В., Митинский Г.М. и др. Общие механизмы адаптации и профилактика определяют здоровье здорового человека // Человек. Спорт. Медицина. 2006. № 3-1. С. 99.
- 11. Наумов И.А., Корнилова Л.Н., Глухих Д.О. и др. Влияние афферентации различных сенсорных входов на отолито-окулярный рефлекс в условиях реальной и моделируемой невесомости // Физиология человека. 2021. T. 47. № 1. C. 84.
- 12. Reschke M.F., Wood S.J., Clément G. Ocular counter rolling in astronauts after short-and long-duration spaceflight // Sci. Rep. 2018. V. 8. № 1. P. 7747.
- 13. Glukhikh D.O., Naumov I.A., Schoenmaekers C. et al. The role of different afferent systems in the modulation of the otolith-ocular reflex after long-term space flights // Front. Physiol. 2022. V. 13. P. 743855.
- 14. Носков В.Б. Адаптация водно-электролитного метаболизма к условиям космического полета и при его имитации // Физиология человека. 2013. Т. 9. № 5. C. 119.
- 15. Olde Engberink R.H., van Oosten P.J., Weber T. et al. The kidney, volume homeostasis and osmoregulation in space: Current perspective and knowledge gaps // NPJ Microgravity. 2023. V. 9. № 1. P. 29.
- 16. Фомина Е.В., Сенаторова Н.А., Бахтерева В.Д. и др. Роль быстрого бега в предотвращении негативных влияний пребывания человека в невесомости // Медицина экстремальных ситуаций. 2023. T. 25. № 4. C. 98.
- 17. Фомина Е.В., Лысова Н.Ю., Резванова С.К. и др. Предикторы готовности космонавта к деятельности на поверхности Марса из опыта орбитальных полетов на МКС // Авиакосм. и экол. мед. 2019. T. 53. № 7. C. 19.
- 18. Neves L.N.S., Gasparini V.H., Alves S.P. et al. Cardiorespiratory fitness level influences the ventilatory threshold identification // J. Phys. Educ. 2021. V. 32. P. e3279.
- 19. Beaver W.L., Wasserman K., Whipp B.J. A new method for detecting anaerobic threshold by gas exchange // J. Appl. Physiol. 1986. V. 60. № 6. P. 2020.
- 20. Summers R.L., Martin D.S., Meck J.V., Coleman T.G. Mechanism of spaceflight-induced changes in left ventricular mass // Am. J. Cardiol. 2005. V. 95. № 9. P. 1128.
- 21. Hughson R.L., Robertson A.D., Arbeille P. et al. Increased postflight carotid artery stiffness and inflight insulin resistance resulting from six-months spaceflight in male and female astronauts // Am. J. Physiol. Heart Circ. Physiol. 2016. V. 310. № 5. P. H628.
- 22. Ghani F., Cheung I., Phillips A. et al. Lung volume, capacity and shape in microgravity: A systematic review and meta-analysis // Acta Astronaut. 2023. V. 212. P. 424.
- 23. Prisk G.K. Pulmonary challenges of prolonged journeys to space: Taking your lungs to the moon // Med. J. Aust. 2019. V. 211. № 6. P. 271.
- 24. Баранов В.М., Катунцев В.П., Тарасенков Г.Г. и др. Изучение активности центрального дыхательного механизма в условиях длительного космического полета // Авиакосм. и экол. мед. 2022. Т. 56. № 3. С. 5.
- 25. Kunz H., Quiriarte H., Simpson R.J. et al. Alterations in hematologic indices during long-duration spaceflight // BMC Hematol. 2017. V. 17. P. 12.
- 26. Серова А.В., Журавлева О.А., Рыкова М.П. и др. Морфофункциональное состояние эритроцитов у космонавтов после полетов различной продолжительности на Международной космической станции // Авиакосм. и экол. мед. 2024. T. 58. № 4. C. 25.
- 27. Scott J.M., Feiveson A.H., English K.L. et al. Effects of exercise countermeasures on multisystem function in long duration spaceflight astronauts // NPJ Microgravity. 2023. V. 9. № 1. P. 11.
- 28. Moore A.D., Lynn P.A., Feiveson A.H. The first 10 years of aerobic exercise responses to long-duration ISS flights // Aerosp. Med. Hum. Perform. 2015. V. 86. № 12. P. A78.
- 29. Moore Jr. A.D., Downs M.E., Lee S.M. et al. Peak exercise oxygen uptake during and following long-duration spaceflight // J. Appl. Physiol. 2014. V. 117. № 3. P. 231.
- 30. Hackney K.J., Scott J.M., Hanson A.M. et al. The astronaut-athlete: Optimizing human performance in space // J. Strength Cond. Res. 2015. V. 29. № 12. P. 3531.
- 31. English K.L., Downs M., Goetchius E. et al. High intensity training during spaceflight: Results from the NASA Sprint Study // NPJ Microgravity. 2020. V. 6. № 1. P. 21.
- 32. Greene K.A., Withers S.S., Lenchik L. et al. Trunk skeletal muscle changes on CT with long-duration spaceflight // Ann. Biomed. Eng. 2021. V. 49. P. 1257.
- 33. Blottner D., Moriggi M., Trautmann G. et al. Space omics and tissue response in astronaut skeletal muscle after short and long duration missions // Int. J. Mol. Sci. 2023. V. 24. № 4. P. 4095.
- 34. Burkhart K., Allaire B., Bouxsein M.L. Negative effects of long-duration spaceflight on paraspinal muscle morphology // Spine. 2019. V. 44. № 12. P. 879.
- 35. McNamara K.P., Greene K.A., Moore A.M. et al. Lumbopelvic muscle changes following long-duration spaceflight // Front. Physiol. 2019. V. 10. P. 627.
- 36. Islamov R., Mishagina E., Tyapkina O. et al. Mechanisms of spinal motoneurons survival in rats under simulated hypogravity on earth // Acta Astronaut. 2011. V. 68. № 9-10. P. 1469.
- 37. Porseva V., Shilkin V., Strelkov A. et al. Changes in the neurochemical composition of motor neurons of the spinal cord in mice under conditions of space flight // Bull. Exp. Biol. Med. 2017. V. 162. P. 336.
- 38. Chelyshev Y.A., Muhamedshina Y., Povysheva T. et al. Characterization of spinal cord glial cells in a model of hindlimb unloading in mice // Neuroscience. 2014. V. 280. P. 328.
- 39. Tyapkina O., Volkov E., Nurullin L. et al. Resting membrane potential and Na+, K+-ATPase of rat fast and slow muscles during modeling of hypogravity // Physiol. Res. 2009. V. 58. № 4. P. 599.