RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Influence of head-up tilt on respiratory-related oscillations of blood pressure and heart rate at different inspiration/expiration phase ratio

PII
S3034615025010057-1
DOI
10.7868/S3034615025010057
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 51 / Issue number 1
Pages
52-62
Abstract
Сardiovascular diseases are commonly associated with disturbances in parasympathetic heart rhythm control, so the development of new methods for assessing vagal cardiotropic influences is an important biomedical task. This work aimed a studying the synchronization of respiration-related oscillations of mean arterial pressure (MAP) and heart rate (HR) depending on the duration of the expiration phase, during which cardiac vagal influences increase. In the study involving nine young men, a passive head-up test was performed at a fixed respiratory rate of 0.2 Hz (12 cycles/min) and different ratios of the inspiration and expiration phase durations: 30/70% and 70/30%. Blood pressure, HR, and pulmonary ventilation were continuously recorded during the experiment. In the supine position, the power of HR oscillations at the respiratory frequency was significantly higher with longer expiratory phase, the power of MAP oscillations; the phase synchronization index, and the phase difference between HR and MAP oscillations did not depend on the breathing pattern. During verticalization of the body, the power of HR oscillations decreased: with 30% expiratory phase – to a lower level than with 70% expiratory phase. The power of MAP oscillations increased and the phase difference between MAP and HR oscillations decreased during orthostasis regardless of the duration of the inspiratory phase, but increased synchronization of MAP and HR oscillations was observed only during a short inspiratory phase. Thus, the phase structure of the respiratory cycle can significantly affect the power of respiration-related HR oscillations and their synchronization with MAP oscillations of the corresponding frequency.
Keywords
дыхательная синусовая аритмия вейвлет-анализ индекс фазовой синхронизации разность фаз ортостатический тест
Date of publication
03.02.2025
Year of publication
2025
Number of purchasers
0
Views
39

References

  1. 1. Баевский Р.М., Иванов Г.Г., Чирейкин Л.В. и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации) // Вестник аритмологии. 2002. № 24. С. 65.
  2. 2. Camm A., Malik M., Bigger J. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology // Eur. Heart J. 1996. V. 17. № 3. P. 354.
  3. 3. Malpas S.C. Neural influences on cardiovascular variability: possibilities and pitfalls // Am. J. Physiol. Heart Circ. Physiol. 2002. V. 282. № 1. P. H6.
  4. 4. Julien C. An update on the enigma of Mayer waves // Cardiovasc. Res. 2020. V. 116. № 14. P. e210.
  5. 5. Gourine A., Gourine A.V. Neural mechanisms of cardioprotection // Physiology (Bethesda). 2014. V. 29. № 2. P. 133.
  6. 6. Kollai M., Koizumi K. Reciprocal and non-reciprocal action of the vagal and sympathetic nerves innervating the heart // J. Auton. Nerv. Syst. 1979. V. 1. № 1. P. 33.
  7. 7. Costa-Silva J.H., Zoccal D.B., Machado B.H. Glutamatergic antagonism in the NTS decreases post-inspiratory drive and changes phrenic and sympathetic coupling during chemoreflex activation // J. Neurophysiol. 2010. V. 103. № 4. P. 2095.
  8. 8. Ottaviani M.M., Wright L., Dawood T., Macefield V.G. In vivo recordings from the human vagus nerve using ultrasound-guided microneurography // J. Physiol. 2020. V. 598. № 17. P. 3569.
  9. 9. Patros M., Ottaviani M.M., Wright L. et al. Quantification of cardiac and respiratory modulation of axonal activity in the human vagus nerve // J. Physiol. 2022. V. 600. № 13. P. 3113.
  10. 10. Saul J.P., Berger R.D., Albrecht P. et al. Transfer function analysis of the circulation: unique insights into cardiovascular regulation // Am. J. Physiol. 1991. V. 261. № 4. Pt. 2. P. H1231.
  11. 11. Clemson P.T., Hoag J.B., Cooke W.H. et al. Beyond the baroreflex: a new measure of autonomic regulation based on the time-frequency assessment of variability, phase coherence and couplings // Front. Netw. Physiol. 2022. V. 2. P. 891604.
  12. 12. Cohen M.A., Taylor J.A. Short-term cardiovascular oscillations in man: measuring and modelling the physiologies // J. Physiol. 2002. V. 542. Pt. 3. P. 669.
  13. 13. Tipton M.J., Harper A., Paton J.F.R., Costello J.T. The human ventilatory response to stress: rate or depth? // J. Physiol. 2017. V. 595. № 17. P. 5729.
  14. 14. Cooke W.H., Hoag J.B., Crossman A.A. et al. Human responses to upright tilt: a window on central autonomic integration // J. Physiol. 1999. V. 517. Pt. 2. P. 617.
  15. 15. Elstad M., Toska K., Chon K.H. et al. Respiratory sinus arrhythmia: Opposite effects on systolic and mean arterial pressure in supine humans // J. Physiol. 2001. V. 536. Pt. 1. P. 251.
  16. 16. Боровик А.С., Павлова Е.А., Жедяев Р.Ю. и др. Изменение фазовых соотношений колебаний артериального давления и сердечного ритма при ортостазе: влияние гравитационной разгрузки // Авиакосм. и эколог. мед. 2024. Т. 58. № 5. С. 25.
  17. 17. Borovik A.S., Kuznetsov S.Y., Vinogradova O.L. Phase synchronization of arterial pressure and heart rate as a measure of baroreflex activity // IEEE Xplore. 2014. P. 217.
  18. 18. Виноградова О.Л., Боровик А.С., Жедяев Р.Ю., Тарасова О.С. Дыхательная синусовая аритмия: физиологические механизмы и связь с колебаниями системного артериального давления // Физиология человека. 2024. Т. 50. № 3. С. 102.
  19. 19. Wesseling K.H., Jansen J.R., Settels J.J., Schreuder J.J. Computation of aortic flow from pressure in humans using a nonlinear, three-element model // J. Appl. Physiol. 1993. V. 74. № 5. P. 2566.
  20. 20. Stauss H.M. Heart rate variability: Just a surrogate for mean heart rate? // Hypertension. 2014. V. 64. № 6. P. 1184.
  21. 21. Lilly J.M., Olhede S.C. Generalized Morse Wavelets as a Superfamily of Analytic Wavelets // IEEE Trans. Signal Process. 2012. V. 60. № 11. P. 6036.
  22. 22. Le Van Quyen M., Foucher J., Lachaux J.P. et al. Comparison of Hilbert transform and wavelet methods for the analysis of neuronal synchrony // J. Neurosci. Methods. 2001. V. 111. № 2. P. 83.
  23. 23. Rosenblum M., Pikovsky A., Kurths J. et al. Phase synchronization: From theory to data analysis // Handb. Biol. Phys. 2001. Chapter 9. V. 4. P. 279.
  24. 24. Borovik A.S., Orlova E.A., Tomilovskaya E.S. et al. Phase coupling between baroreflex oscillations of blood pressure and heart rate changes in 21-day dry immersion // Front. Physiol. 2020. V. 11. P. 455.
  25. 25. Zhedyaev R.Y., Tarasova O.S., Semenov Y.S. et al. The change in baroreflex regulation of heart rhythm after “dry” immersion appears during orthostasis, but not lower body negative pressure test // J. Evol. Biochem. Physiol. 2024. V. 60. № 1. P. 273.
  26. 26. Strauss-Blasche G., Moser M., Voica M. et al. Relative timing of inspiration and expiration affects respiratory sinus arrhythmia // Clin. Exp. Pharmacol. Physiol. 2000. V. 27. № 8. P. 601.
  27. 27. Bae D., Matthews J.J.L., Chen J.J., Mah L. Increased exhalation to inhalation ratio during breathing enhances high-frequency heart rate variability in healthy adults // Psychophysiology. 2021. V. 58. № 11. P. e13905.
  28. 28. Meehan Z.M., Shaffer F. Do longer exhalations increase HRV during slow-paced breathing? // Appl. Psychophysiol. Biofeedback. 2024. V. 49. № 3. P. 407.
  29. 29. Paprika D., Gingl Z., Rudas L., Zöllei E. Hemodynamic effects of slow breathing: does the pattern matter beyond the rate? // Acta Physiol. Hung. 2014. V. 101. № 3. P. 273.
  30. 30. Eckberg D.L., Cooke W.H., Diedrich A. et al. Respiratory modulation of human autonomic function on Earth // J. Physiol. 2016. V. 594. № 19. P. 5611.
  31. 31. Baselli G., Cerutti S., Badilini F. et al. Model for the assessment of heart period and arterial pressure variability interactions and of respiration influences // Med. Biol. Eng. Comput. 1994. V. 32. № 2. P. 143.
  32. 32. Pagani M., Lombardi F., Guzzetti S. et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog // Circ. Res. 1986. V. 59. № 2. P. 178.
  33. 33. Taylor J.A., Eckberg D.L. Fundamental relations between short-term RR interval and arterial pressure oscillations in humans // Circulation. 1996. V. 93. № 8. P. 1527.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library