RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

The Use of Different Types of Mechanical Support Stimulation in the Correction of Motor Disorders

PII
10.31857/S0131164624060084-1
DOI
10.31857/S0131164624060084
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 6
Pages
70-79
Abstract
To date, there is evidence that support stimulation of the feet in neurological practice is a promising method for motor rehabilitation. The implementation of support stimulation is possible in various ways, but according to the results of modern research, mechanical stimulation of the feet demonstrates the greatest effectiveness. At the same time, the area, localization and intensity of mechanical support stimulation determine the activation features of the cutaneous mechanoreceptors of the soles, affecting evoked motor responses. From this perspective, the question of which type of mechanical support stimulation is the most practical and prospective remains relevant. In this review, we consider the currently existing approaches to mechanical support stimulation, as well as the results of their application in medical practice in order to improve motor abilities in patients.
Keywords
опорная стимуляция реабилитация медицинские устройства опорная афферентация механорецепторы
Date of publication
01.06.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Козловская И.Б. Гравитация и позно-тоническая двигательная система // Авиакосм. и эколог. мед. 2017. Т. 51. № 3. С. 5.
  2. 2. Шенкман Б.С., Мирзоев Т.М., Козловская И.Б. Тоническая активность и гравитационный контроль постуральной мышцы // Авиакосм. и эколог. мед. 2020. Т. 56. № 6. С. 58.
  3. 3. Moore S.T., Dilda V., Morris T.R. et al. Long-duration spaceflight adversely affects post-landing operator proficiency // Sci. Rep. 2019. V. 9. № 1. P. 2677.
  4. 4. Saveko A., Bekreneva M., Ponomarev I. et al. Impact of different ground-based microgravity models on human sensorimotor system // Front. Physiol. 2023. V. 14. P. 1085545.
  5. 5. Ратушный А.Ю., Буравкова Л.Б. Эффекты микрогравитации и физиология старения: сходные изменения или общие механизмы? // Биохимия. 2023. Т. 88. № 1. С. 2138.
  6. 6. Pandiarajan M., Hargens A.R. Ground-based analogs for human spaceflight // Front. Physiol. 2020. V. 11. P. 716.
  7. 7. Носикова И.Н., Рябова А.М., Китов В.В., Томиловская Е.С. Эффективность космических средств профилактики для предотвращения развития гиперрефлексии // Интегративная физиология. 2023. Т. 4. № 3. С. 335.
  8. 8. Motanova E., Bekreneva M., Rukavishnikov I. et al. Application of space technologies aimed at proprioceptive correction in terrestrial medicine in Russia // Front. Physiol. 2022. V. 13. P. 921862.
  9. 9. Левченкова В.Д., Семенова К.А. Современные представления о морфологической основе детского церебрального паралича // Журн. неврол. и психиатр. им. С.С. Корсакова. 2012. Т. 112. № 7–2. С. 4.
  10. 10. Кремнева Е.И., Саенко И.В., Черникова Л.А. и др. Особенности активации зон коры головного мозга при стимуляции опорных рецепторов в норме и при очаговых поражениях ЦНС // Физиология человека. 2013. Т. 39. № 5. С. 86.
  11. 11. Черникова Л.А., Кремнева Е.И., Червяков А.В. и др. Новые подходы в изучении механизмов нейропластических процессов у больных с поражениями центральной нервной системы // Физиология человека. 2013. Т. 39. № 3. С. 54.
  12. 12. Viseux F.J.F., Lemaire A., Barbier F. et al. How can the stimulation of plantar cutaneous receptors improve postural control? Review and clinical commentary // Neurophysiol. Clin. 2019. V. 49. № 3. P. 263.
  13. 13. Brognara L., Cauli O. Mechanical plantar foot stimulation in Parkinson's disease: A scoping review // Diseases. 2020. V. 8. № 2. P. 12.
  14. 14. Viseux F.J.F. The sensory role of the sole of the foot: Review and update on clinical perspectives // Neurophysiol. Clin. 2020. V. 50. № 1. P. 55.
  15. 15. Шварков С.Б., Титова Е.Ю., Мизиева З.М. и др. Применение методов комплексной проприоцептивной коррекции в восстановлении двигательных функций у больных инсультом // Клиническая практика. 2011. Т. 2. № 3. С. 3.
  16. 16. Саенко И.В., Кремнева Е.И., Глебова О.В. и др. Новые подходы в реабилитации больных с поражениями ЦНС, базирующиеся на гравитационных механизмах // Физиология человека. 2017. Т. 43. № 5. С. 118.
  17. 17. Притыко А.Г., Чебаненко Н.В., Зыков В.П. и др. Опыт применения проприоцептивного моделирования ходьбы у детей раннего возраста с двигательными расстройствами // Рус. журн. детской неврологии. 2019. Т. 14. № 3. С. 16.
  18. 18. Томиловская Е.С., Мошонкина Т.Р., Городничев Р.М. и др. Механическая стимуляция опорных зон стоп: неинвазивный способ активации генераторов шагательных движений у человека // Физиология человека. 2013. Т. 39. № 5. С. 34.
  19. 19. Глебова О.В., Максимова М.Ю., Черникова Л.А. Механическая стимуляция опорных зон стоп в остром периоде среднетяжелого и тяжелого инсульта // Вест. восст. мед. 2014. Т. 1. № 1. С. 71.
  20. 20. Хорошун А.А., Пирадов М.А., Черникова Л.А. Новые технологии нейрореабилитации: имитатор опорной нагрузки при синдроме Гийена–Барре // Анналы клинической и экспериментальной неврологии. 2012. Т. 6. № 1. С. 20.
  21. 21. Kang G.E., Zahiri M., Lepow B. et al. The effect of daily use of plantar mechanical stimulation through micro-mobile foot compression device installed in shoe insoles on vibration perception, gait, and balance in people with diabetic peripheral neuropathy // J. Diabetes Sci. Technol. 2019. V. 13. № 5. P. 847.
  22. 22. Maurer C., Mergner T., Bolha B., Hlavacka F. Human balance control during cutaneous stimulation of the plantar soles // Neurosci. Lett. 2001. V. 302. № 1. P. 45.
  23. 23. Leelachutidej O., Srisawasdi G., Chadchavalpanichaya N., Sukthomya S. Influence of textured surface insoles on postural control in older adults // J. The Department of Medical Services. 2023. V. 48. № 2. P. 45.
  24. 24. Qiu F., Cole M.H., Davids K.W. et al. Effects of textured insoles on balance in people with Parkinson's disease // PLoS One. 2013. V. 8. № 12. P. e83309.
  25. 25. Yumin T.E., Simsek T.T., Sertel M. et al. The effect of foot plantar massage on balance and functional reach in patients with type II diabetes // Physiother. Theory Pract. 2017. V. 33. № 2. P. 115.
  26. 26. Wikstrom E.A., Song K., Lea A., Brown N. Comparative effectiveness of plantar-massage techniques on postural control in those with chronic ankle instability // J. Athl. Train. 2017. V. 52. № 7. P. 629.
  27. 27. Huang M., Yick K.L., Ng S.P. et al. The effect of support surface and footwear condition on postural sway and lower limb muscle action of the older women // PLoS One. 2020. V. 15. № 6. P. e0234140.
  28. 28. Brognara L., Navarro-Flores E., Iachemet L. et al. Beneficial effect of foot plantar stimulation in gait parameters in individuals with Parkinson's disease // Brain Sci. 2020. V. 10. № 2. P. 69.
  29. 29. Tedeschi R. Automated mechanical peripheral stimulation for gait rehabilitation in Parkinson's disease: A comprehensive review // Clin. Park. Relat. Disord. 2023. V. 9. P. 100219.
  30. 30. Kleiner A., Galli M., Gaglione M. et al. The Parkinsonian gait spatiotemporal parameters quantified by a single inertial sensor before and after automated mechanical peripheral stimulation treatment // Parkinsons Dis. 2015. V. 2015. P. 390512.
  31. 31. Kleiner A.F.R., Souza Pagnussat A., Pinto C. et al. Automated mechanical peripheral stimulation effects on gait variability in individuals with Parkinson disease and freezing of gait: A double-blind, randomized controlled trial // Arch. Phys. Med. Rehabil. 2018. V. 99. № 12. P. 2420.
  32. 32. Prusch J.S., Kleiner A.F.R., Salazar A.P. et al. Automated mechanical peripheral stimulation and postural control in subjects with Parkinson's disease and freezing of gait: a randomized controlled trial // Funct. Neurol. 2018. V. 33. № 4. P. 206.
  33. 33. Zelada-Astudillo N., Moreno V.C., Herrera-Santelices A. et al. Effect of the combination of automated peripheral mechanical stimulation and physical exercise on aerobic functional capacity and cardiac autonomic control in patients with Parkinson's disease: A randomized clinical trial protocol // Trials. 2021. V. 22. № 1. P. 250.
  34. 34. Marques N.R., Kuroda M.H., Moreno V.C. et al. Effects of automatic mechanical peripheral stimulation on gait biomechanics in older adults with Parkinson's disease: a randomized crossover clinical trial // Aging Clin. Exp. Res. 2022. V. 34. № 6. P. 1323.
  35. 35. Barbic F., Galli M., Dalla Vecchia L. et al. Effects of mechanical stimulation of the feet on gait and cardiovascular autonomic control in Parkinson's disease // J. Appl. Physiol. (1985). 2014. V. 116. № 5. P. 495.
  36. 36. Lirani-Silva E., Vitório R., Barbieri F.A. et al. Continuous use of textured insole improve plantar sensation and stride length of people with Parkinson's disease: A pilot study // Gait Posture. 2017. V. 58. P. 495.
  37. 37. Asgari N., Yeowell G., Sadeghi-Demneh E. A comparison of the efficacy of textured insoles on balance performance in older people with versus without plantar callosities // Gait Posture. 2022. V. 94. P. 217.
  38. 38. Foisy A., Gaertner C., Matheron E., Kapoula Z. Controlling posture and vergence eye movements in quiet stance: effects of thin plantar inserts // PLoS One. 2015. V. 10. № 12. P. e0143693.
  39. 39. Viseux F., Barbier F., Villeneuve P. et al. Low additional thickness under the toes could change upright balance of healthy subjects // Neurophysiol. Clin. 2018. V. 48. № 6. P. 397.
  40. 40. Wang J., Qiao L., Yu L. et al. Effect of customized insoles on gait in post-stroke hemiparetic individuals: A randomized controlled trial // Biology. 2021. V. 10. № 11. P. 1187.
  41. 41. Strzalkowski N.D., Incognito A.V., Bent L.R., Millar P.J. Cutaneous mechanoreceptor feedback from the hand and foot can modulate muscle sympathetic nerve activity // Front. Neurosci. 2016. V. 10. P. 568.
  42. 42. Seri F.A.S., Abd Hamid A.I., Abdullah J.M. et al. Investigating cortical networks from vibrotactile stimulation in young adults using independent component analysis: An fMRI study // Neurosci. Res. Notes. 2023. V. 6. № 3. P. 194.
  43. 43. Manyakhina I.V., Mirkin A.S., Turbina L.G. et al. Use of a vibrostimulatory shoe as a component in the treatment of patients suffering cerebral insult // Neurosci. Behav. Physiol. 1985. V. 15. № 6. P. 480.
  44. 44. Khalifeloo M., Naghdi S., Ansari N.N. et al. A study on the immediate effects of plantar vibration on balance dysfunction in patients with stroke // J. Exerc. Rehabil. 2018. V. 14. № 2. P. 259.
  45. 45. Önal B., Sertel M., Karaca G. Effect of plantar vibration on static and dynamic balance in stroke patients: a randomised controlled study // Physiotherapy. 2022. V. 116. P. 1.
  46. 46. Novak P., Novak V. Effect of step-synchronized vibration stimulation of soles on gait in Parkinson's disease: A pilot study // J. Neuroeng. Rehabil. 2006. V. 3. P. 9.
  47. 47. Cham M.B., Mohseni-Bandpei M.A., Bahramizadeh M. et al. The effects of vibro-medical insole on sensation and plantar pressure distribution in diabetic patients with mild-to-moderate peripheral neuropathy // Clin. Biomech. (Bristol, Avon). 2018. V. 59. P. 34.
  48. 48. Brognara L., Mazzotti A., Di Martino A. et al. Wearable sensor for assessing gait and postural alterations in patients with diabetes: a scoping review // Medicina. 2021. V. 57. № 11. P. 1145.
  49. 49. Hatton A.L., Chatfield M.D., Cattagni T., Vicenzino B. The effects of vibrating shoe insoles on standing balance, walking, and ankle-foot muscle activity in adults with diabetic peripheral neuropathy // Gait Posture. 2024. V. 111. P. 8.
  50. 50. Lauzier L., Kadri M.A., Bouchard E. et al. Vibration of the whole foot soles surface using an inexpensive portable device to investigate age-related alterations of postural control // Front. Hum. Neurosci. 2021. V. 15. P. 719502.
  51. 51. Strzalkowski N.D.J., Peters R.M., Inglis J.T., Bent L.R. Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? // J. Neurophysiol. 2018. V. 120. № 3. P. 1233.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library