RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Evoked Potentials of the Human Midbrain and Cortex Registered in Response to the Transition from a Consonant to a Vowel Sound

PII
10.31857/S0131164624060013-1
DOI
10.31857/S0131164624060013
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 6
Pages
3-12
Abstract
Speech is a continuous stream of sounds. To perceive speech, it is necessary to allocate discrete units with different frequency, volume and duration during its sounding. The purpose of this study was to identify the responses of the human cortex and midbrain to the transition from a consonant to a vowel sound in a syllable. The study analyzed and compared evoked potentials (EP) recorded using deep electrodes in 2 patients during intraoperative monitoring (IOM) with EP recorded in 29 healthy volunteers from the head surface. Groups of peaks following the beginning of the stimulus sound and the transition from consonant to vowel sound were detected on the EP registered in response to syllables and vowel sounds. Similar groups of short-latency peaks – S (from “start”) and C (from “change”), following the beginning of the stimulus sound and the transition from consonant to vowel sound, respectively, were distinguished on the patients’ EP. Their latencies had no significant differences (p > 0.05). Similarly, complexes of long-latent peaks N1S-P2S and N1C-P2C, similar to each other, were isolated on the EP of healthy volunteers. Their latencies also had no significant differences (p > 0.05). During the sounding of the stimulus, the cortex performs high-level (cognitive) sound processing, while the midbrain performs low-level (primary) processing, firstly providing rapid transmission of information to the cortex. With pathologies of the auditory structures of the thalamus and cortex, the ability to respond to changes in the characteristics of sound during its sounding, including speech, is likely to be impaired or lost.
Keywords
вызванные потенциалы средний мозг кора восприятие речи слог
Date of publication
01.06.2024
Year of publication
2024
Number of purchasers
0
Views
28

References

  1. 1. Boruta L., Peperkamp S., Crabbé B., Dupoux E. Testing the robustness of online word segmentation: Effects of linguistic diversity and phonetic variation / Proceedings of the 2nd workshop on cognitive modeling and computational linguistics. Portland. Oregon. USA, 2011. P. 1.
  2. 2. Kuhl P.K. Early language acquisition: Cracking the speech code // Nat. Rev. Neurosci. 2004. V. 5. № 11. P. 831.
  3. 3. Shea C., Curtin S. Discovering the relationship between context and allophones in a second language: Evidence for distribution-based learning // Stud. Second Lang. Acquis. 2010. V. 32. № 4. P. 581.
  4. 4. Ashby M., Maidment J. Introducing phonetic science. Cambridge: Cambridge University Press, 2005. 230 p.
  5. 5. Кодзасов С.В., Кривнова О.Ф. Общая фонетика. М.: РГГУ, 2001. 592 с.
  6. 6. Oxenham A.J. How we hear: The perception and neural coding of sound // Annu. Rev. Psychol. 2018. V. 69. № 1. P. 27.
  7. 7. Lau B.K., Mehta A.H., Oxenham A.J. Superoptimal perceptual integration suggests a place-based representation of pitch at high frequencies // J. Neurosci. 2017. V. 37. № 37. P. 9013.
  8. 8. Kandel E.R., Koester J.D., Mack S.H., Siegelbaum S.A. Principles of neural science. 6th ed. New York: McGraw-Hill Professional, 2021. 1696 p.
  9. 9. Dorfman L.J. Sensory evoked potentials: clinical applications in medicine // Annu. Rev. Med. 1983. V. 34. P. 473.
  10. 10. Picton T.W., Hillyard S.A., Krausz H.I., Galambos R. Human auditory evoked potentials. I: Evaluation of components // Electroencephalogr. Clin. Neurophysiol. 1974. V. 36. № 2. P. 179.
  11. 11. Канцерова A.O., Окнина Л.Б. Пицхелаури Д.И. и др. Вызванные потенциалы среднего мозга, ассоциированные с началом и окончанием звучания простого тона // Физиология человека. 2022. Т. 48. № 3. С. 5.
  12. 12. Nakagawa K., Otsuru N., Inui K., Kakigi R. Change-related auditory P50: A MEG study // NeuroImage. 2014. V. 86. P. 131.
  13. 13. Hillyard S.A., Picton T.W. ON and OFF components in the auditory evoked potential // Percept. Psychophys. 1978. V. 24. № 5. P. 391.
  14. 14. Kim J.R. Acoustic change complex: Clinical implications // J. Audiol. Otol. 2015. V. 19. № 3. P. 120.
  15. 15. Ostroff J.M., Martin B.A., Boothroyd A. Cortical evoked response to acoustic change within a syllable // Ear. Hear. 1998. V. 19. № 4. P. 290.
  16. 16. Kaukoranta E., Hari R., Lounasmaa O.V. Responses of the human auditory cortex to vowel onset after fricative consonants // Exp. Brain Res. 1987. V. 69. № 1. P. 19.
  17. 17. Eggermont J. Auditory brainstem response // Handb. Clin. Neurol. 2019. V. 160. P. 451.
  18. 18. Krizman J., Kraus N. Analyzing the FFR: A tutorial for decoding the richness of auditory function // Hear. Res. 2019. V. 382. P. 107779.
  19. 19. Johnson K.L., Nicol T., Zecker S.G. et al. Brainstem encoding of voiced consonant--vowel stop syllables // Clin. Neurophysiol. 2008. V. 119. № 11. P. 2623.
  20. 20. Nourski K.V., Steinschneider M., Rhone A.E. et al. Sound identification in human auditory cortex: Differential contribution of local field potentials and high gamma power as revealed by direct intracranial recordings // Brain Lang. 2015. V. 148. P. 37.
  21. 21. Moses D.A., Mesgarani N., Leonard M.K., Chang E.F. Neural speech recognition: Continuous phoneme decoding using spatiotemporal representations of human cortical activity // J. Neural. Eng. 2016. V. 13. № 5. P. 056004.
  22. 22. Parsons C.E., Young K.S., Joensson M. et al. Ready for action: A role for the human midbrain in responding to infant vocalizations // Soc. Cogn. Affect. Neurosci. 2014. V. 9. № 7. P. 977.
  23. 23. Sala F., Lanteri P., Bricolo A. Motor evoked potential monitoring for spinal cord and brain stem surgery // Adv. Tech. Stand. Neurosurg. 2004. V. 29. P. 133.
  24. 24. Канцерова А.О., Окнина Л.Б., Пицхелаури Д.И. и др. Вызванные потенциалы среднего мозга человека, появляющиеся после окончания звучания простого тона // Журн. высш. нервн. деят. им. И.П. Павлова. 2022. T. 72. № 5. С. 707.
  25. 25. Van Hooff J.C., De Beer N.A.M., Brunia C.H.M. et al. Event-related potential measures of information processing during general anesthesia // Electroencephalogr. Clin. Neurophysiol. 1997. V. 103. № 2. P. 268.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library