ОФФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Оценка параметров внешнего дыхания человека в условиях моделированной лунной гравитации и микрогравитации

Код статьи
10.31857/S0131164624050041-1
DOI
10.31857/S0131164624050041
Тип публикации
Статья
Статус публикации
Опубликовано
Авторы
Том/ Выпуск
Том 50 / Номер выпуска 5
Страницы
29-40
Аннотация
В данной статье представлены основные результаты серии экспериментов, посвященных изучению влияния моделированной микрогравитации и лунной гравитации на функцию внешнего дыхания человека. Показано, что пребывание человека в условиях антиортостатической (модель физиологических эффектов микрогравитации) и ортостатической гипокинезии (модель физиологических эффектов лунной гравитации), аналогично горизонтальному положению, приводит к клинически не значимому снижению основных респираторных показателей в первые часы воздействия. В дальнейшем, в ходе гипокинезии эти изменения постепенно нивелируются. После прекращения экспериментального воздействия показатели функции внешнего дыхания восстанавливаются до уровня фоновых значений.
Ключевые слова
дыхательная система спирометрия ортостатическая гипокинезия лунная гравитация антиортостатическая гипокинезия микрогравитация космический полет
Дата публикации
01.05.2024
Год выхода
2024
Всего подписок
0
Всего просмотров
29

Библиография

  1. 1. Krittanawong C., Singh N.K., Scheuring R.A. et al. Human health during space travel: state-of-the-art review // Cells. 2023. V. 12. № 1. P. 40.
  2. 2. Tomsia M., Cieśla J., Śmieszek J. et al. Long-term space missions’ effects on the human organism: what we do know and what requires further research // Front. Physiol. 2024. V. 15. P. 1284644.
  3. 3. Ghani F., Cheung I., Phillips A. et al. Lung volume, capacity and shape in microgravity: A systematic review and meta-analysis // Acta Astronautica. 2023. V. 212. P. 424.
  4. 4. Prisk G.K. Microgravity and the respiratory system // Eur. Respire. J. 2014. V. 43. № 5. P. 1459.
  5. 5. Prisk G.K. Pulmonary challenges of prolonged journeys to space: taking your lungs to the moon // Med. J. Aust. 2019. V. 211. № 6. P. 271.
  6. 6. Баранов В.М. Эволюция взглядов на физиологию дыхания в невесомости // Авиакосм. и эколог. мед. 2023. Т. 57. № 5. С. 20.
  7. 7. Донина Ж.А. Межсистемные взаимоотношения дыхания и кровообращения // Физиология человека. 2011. Т. 37. № 2. С. 117.
  8. 8. Баранов В.М., Катунцев В.П., Баранов М.В. и др. Вызовы космической медицине при освоении человеком Луны: риски, адаптация, здоровье, работоспособность // Ульяновский медико-биологический журнал. 2018. № 3. С. 109.
  9. 9. Баранов М.В., Катунцев В.П., Шпаков А.В., Баранов В.М. Метод наземного моделирования физиологических эффектов пребывания человека в условиях гипогравитации // Бюл. эксп. биол. и мед. 2015. Т. 160. № 9. С. 392.
  10. 10. Григорьев А.И., Козловская И.Б. Годичная антиортостатическая гипокинезия (АНОГ) – физиологическая модель межпланетного космического полета. М.: РАН, 2018. 288 с.
  11. 11. Hargens A.R., Vico L. Long-duration bed rest as an analog to microgravity // J. Appl. Physiol. 2016. V. 120. № 8. P. 891.
  12. 12. Козловская И.Б., Ярманова Е.Н., Егоров А.Д. и др. Развитие российской системы профилактики неблагоприятных влияний невесомости в длительных полетах на МКС // Международная космическая станция. Российский сегмент. М.: РАН, 2011. Т. 1. С. 63.
  13. 13. Каменева М.Ю., Черняк А.В., Айсанов З.Р. и др. Спирометрия: методическое руководство по проведению исследования и интерпретации результатов // Пульмонология. 2023. Т. 33. № 3. С. 307.
  14. 14. Малаева В.В., Коренбаум В.И., Почекутова И.А. и др. Акустическая оценка вентиляционной функции легких у человека при моделировании физиологических эффектов невесомости и лунной гравитации // Медицина экстремальных ситуаций. 2016. Т. 55. № 1. С. 40.
  15. 15. Segizbaeva M.O., Donina Zh.A., Aleksandrov V.G., Aleksandrova N.P. The mechanisms of compensatory responses of the respiratory system to simulated central hypervolemia in normal subjects // Adv. Exp. Med. Biol. 2015. V. 858. P. 9.
  16. 16. Донина Ж.А., Баранов В.М., Александрова Н.П., Ноздрачев А.Д. Дыхание и гемодинамика при моделировании физиологических эффектов невесомости. СПб.: Наука, 2013. 182 с.
  17. 17. Katz S., Arish N., Rokach A. et al. The effect of body position on pulmonary function: a systematic review // BMC Pulm. Med. 2018. V. 18. P. 159.
  18. 18. Yadollahi A., Singh B., Bradley T.D. investigating the dynamics of supine fluid redistribution within multiple body segments between men and women // Ann. Biomed. Eng. 2015. V. 43. № 9. P. 2131.
  19. 19. Yamada Y., Yamada M., Yokoyama Y. et al. Differences in lung and lobe volumes between supine and standing positions scanned with conventional and newly developed 320-detector-row upright CT: intra-individual comparison // Respiration. 2020. V. 99. № 7. P. 598.
  20. 20. Yamada Y., Yamada M., Chubachi S. et al. Comparison of inspiratory and expiratory airway volumes and luminal areas among standing, sitting, and supine positions using upright and conventional CT // Sci. Rep. 2022. V. 12. № 1. P. 21315.
  21. 21. Сегизбаева М.О., Погодин М.А., Лаврова И.Н. и др. Влияние антиортостатического воздействия на респираторные параметры и функциональную активность инспираторных мышц человека // Физиология человека. 2011. Т. 37. № 2. С. 52.
  22. 22. Григорьев А.И., Ларина И.М. Водно-солевой обмен и функции почек у человека при длительной гипокинезии // Нефрология. 2001. Т. 5. № 3. С. 7.
  23. 23. Носков В.Б. Адаптация водно-солевого метаболизма к космическому полету и его имитации // Физиология человека. 2013. Т. 39. № 5. С. 119.
  24. 24. Montgomery L.D. Body volume changes during simulated microgravity. II: Comparison of horizontal and head-down bed rest // Aviat. Space Environ. Med. 1993. V. 64. № 10. P. 899.
  25. 25. Whittle R.S., Keller N., Hall E.A. et al. Gravitational dose-response curves for acute cardiovascular hemodynamics and autonomic responses in a tilt paradigm // J. Am. Heart Assoc. 2022. V. 11. № 14. P. e024175.
  26. 26. Pablo A.S., Jacob B.L., Jacquelyn C.K. et al. Effects of exercise training on pulmonary function in adults with chronic lung disease: a meta-analysis of randomized controlled trials // Arch. Phys. Med. Rehabil. 2018. V. 99. № 12. P. 2561.
  27. 27. Arbeille P., Provost R., Zuj K., Vincent N. Measurements of jugular, portal, femoral, and calf vein cross-sectional area for the assessment of venous blood redistribution with long duration spaceflight (Vessel Imaging Experiment) // Eur. J. Appl. Physiol. 2015. V. 115. № 10. P. 2099.
  28. 28. Norsk P. Adaptation of the cardiovascular system to weightlessness: Surprises, paradoxes and implications for deep space missions // Acta Physiol. 2020. V. 228. № 3. P. e13434.
  29. 29. Elliott A.R., Prisk G.K., Guy H.J., West J.B. Lung volumes during sustained microgravity on Spacelab SLS-1 // J. Appl. Physiol. 1994. V. 77. № 4. P. 2005.
  30. 30. Elliott A.R., Prisk G.K., Guy H.J. et al. Forced expirations and maximum expiratory flow-volume curves during sustained microgravity on SLS-1 // J. Appl. Physiol. 1996. V. 81. № 1. P. 33.
QR
Перевести

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Высшая аттестационная комиссия

При Министерстве образования и науки Российской Федерации

Scopus

Научная электронная библиотека