- PII
- 10.31857/S0131164624050015-1
- DOI
- 10.31857/S0131164624050015
- Publication type
- Article
- Status
- Published
- Authors
- Volume/ Edition
- Volume 50 / Issue number 5
- Pages
- 3-12
- Abstract
- The localization of start and turn points in rhythmic sound movement created through the modeling of binaural beats (BB) was investigated. The BB-modeled broadband stimuli consisted of stationary initial and final segments with a section of cyclic motion between them. Spatial effects were induced by changes in the interaural time difference (ITD). During the experiment, subjects assessed the position of the movement trajectory ends or the position of reference points using a graphic tablet. It was discovered that the perception of rhythmic movement of the sound image was significantly influenced by the integrative ability of the binaural auditory system. The results indicated that with instantaneous switching between stationary segments, the perceived positions of the trajectory ends (start point and turn point) matched the positions of the reference points. Conversely, the smooth movement between the same extreme values showed a displacement of the trajectory ends: the turn points were localized further from the reference points compared to the start points, at all trajectory positions in space. Localization of the trajectory end crucially depended on the time that the sound had stayed near the turning point. These patterns were expressed stronger in the central area of the acoustic space compared to the periphery.
- Keywords
- бинауральные биения циклическое движение широкополосные сигналы траектория движения локализация звука
- Date of publication
- 01.05.2024
- Year of publication
- 2024
- Number of purchasers
- 0
- Views
- 25
References
- 1. Carlile S., Leung J. The perception of auditory motion // Trends Hear. 2016. V. 20. P. 2331216516644254.
- 2. Альтман Я.А. Пространственный слух. СПб.: Институт физиологии им. И.П. Павлова РАН, 2011. 311 с.
- 3. Perrott D.R., Musicant A.D. Minimum audible movement angle: Binaural localization of moving sound sources // J. Acoust. Soc. Am. 1977. V. 62. № 6. P. 1463.
- 4. Петропавловская Е.А., Шестопалова Л.Б., Вайтулевич С.Ф. Проявления инерционности слуховой системы при локализации движущихся звуковых образов малой длительности // Физиология человека. 2010. Т. 36. № 4. С. 34.
- 5. Петропавловская Е.А., Шестопалова Л.Б., Вайтулевич С.Ф. Предсказательная способность слуховой системы при плавном движении и скачкообразном перемещении звуковых образов малой длительности // Журн. высш. нервн. деят. им. И.П. Павлова. 2011. Т. 61. № 3. С. 293.
- 6. Kollmeier B., Gilkey R.H. Binaural forward and backward masking: evidence for sluggishness in binaural detection // J. Acoust. Soc. Am. 1990. V. 87. № 4. P. 1709.
- 7. Culling J.F., Summerfield Q. Measurements of the binaural temporal window using a detection task // J. Acoust. Soc. Am. 1998. V. 103. P. 3540.
- 8. Bernstein L.R., Trahiotis C., Akeroyd M.A., Hartung K. Sensitivity to brief changes of interaural time and interaural intensity // J. Acoust. Soc. Am. 2001. V. 109. P. 1604.
- 9. Grantham D.W., Wightman F.L. Detectability of varying interaural temporal differences // J. Acoust. Soc. Am. 1978. V. 63. P. 511.
- 10. Akeroyd M.A. A binaural beat constructed from a noise // J. Acoust. Soc. Am. 2010. V. 128. P. 3301.
- 11. Варфоломеев А.Л., Старостина Л. В. Слуховые вызванные потенциалы человека при иллюзорном движении звукового образа // Росс. физиол. журн. им. И.М. Сеченова. 2006. Т. 92. № 9. С. 1046.
- 12. Krumbholz K., Hewson-Stoate N., Schönwiesner M. Cortical response to auditory motion suggests an asymmetry in the reliance on inter-hemispheric connections between the left and right auditory cortices // J. Neurophysiol. 2007. V. 97. P. 1649.
- 13. Альтман Я.А. Локализация движущегося источника звука. Л.: Наука, 1983. 176 с.
- 14. Chandler D.W., Grantham D.W. Minimum audible movement angle in the horizontal plane as a function of stimulus frequency and bandwidth, source azimuth, and velocity // J. Acoust. Soc. Am. 1992. V. 91. № 3. P. 1624.
- 15. Saberi K., Hafter E.R. Experiments on auditory motion discrimination / Binaural and Spatial Hearing in Real and Virtual Environments. NJ: Erlbaum Publ., 1997. P. 315.
- 16. Altman J.A., Romanov V.P. Psychophysical characteristics of the auditory image movement perception during dichotic stimulation // Int. J. Neurosci. 1988. V. 38. P. 369.
- 17. Strybel T.Z., Manligas C.L., Chan O., Perrott D.R. A comparison of the effects of spatial separation on apparent motion in the auditory and visual modalities // Percept. Psychophys. 1990. V. 47. № 5. P. 439.
- 18. Zuk N., Delgutte B. Neural coding and perception of auditory motion direction based on interaural time differences // J. Neurophysiol. 2019. V. 122. № 4. P. 1821.
- 19. Shestopalova L.B., Petropavlovskaia E.A., Salikova D.A., Semenova V.V. Temporal integration of sound motion: Motion-onset response and perception // Hear. Res. 2024. V. 441. P. 108922.
- 20. Getzmann S. Effects of velocity and motion-onset delay on detection and discrimination of sound motion // Hear. Res. 2008. V. 246. P. 44.
- 21. Шестопалова Л.Б., Петропавловская Е.А. Негативность рассогласования и пространственный слух // Успехи физиол. наук. 2019. Т. 50. № 3. С. 14.
- 22. Friedman D., Cycowicz Y.M., Gaeta H. The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty // Neurosci. Biobehav. 2001. V. 25. P. 355.
- 23. Polich J. Updating P300: an integrative theory of P3a and P3b // Clin. Neurophysiol. 2007. V. 118. P. 2128.