RAS PhysiologyФизиология человека Human Physiology

  • ISSN (Print) 0131-1646
  • ISSN (Online) 3034-6150

Fatty acids significance in improvement athlete’s aerobic performance: review and prospects

PII
10.31857/S0131164624030095-1
DOI
10.31857/S0131164624030095
Publication type
Review
Status
Published
Authors
Volume/ Edition
Volume 50 / Issue number 3
Pages
114-125
Abstract
Fats are the second most important energy substrates after carbohydrates. They are actively used as energy substrate in skeletal and cardiac muscles during aerobic exercise. This review presents modern data about the effects of different exercise intensities on lipid metabolism, the profile of plasma fatty acids (FAs), and the rate of fat oxidation. FAs metabolism is chiefly determined by exercise intensities and diets of athletes. Mobilization and oxidation of FAs extension with the increase of duration and intensity exercise, and under cold conditions when fats are used for energy supply and thermoregulation. The essential and saturated FAs are the most labile to exercise. An interesting direction for future research would be a study of maximal fat oxidation as a new marker of aerobic performance (AP), since there are practically no literature resources on the contribution of different classes of FAs to the AР in elite athletes. In addition, there is no clear understanding of how FAs oxidation is regulated and limited in skeletal muscles during a high-intensity exercise, of the mechanisms of transport and utilization of different classes of FAs depending on diet and training status. Such understanding would allow us to conduct more thorough monitoring of the functional status of athletes, and design the training process suitable to aerobic loads.
Keywords
жирные кислоты скорость окисления жиров аэробная работоспособность физическая нагрузка лыжники-гонщики
Date of publication
01.03.2024
Year of publication
2024
Number of purchasers
0
Views
29

References

  1. 1. Heikki R. Handbook of Sports Medicine and Science Cross Country Skiing. KIHUa Research Institute for Olympic Sports. Finland, 2003. 210 p.
  2. 2. Попов Д.В., Виноградова О.Л., Григорьев А.И. Аэробная работоспособность человека. М.: Наука, 2013. 99 с.
  3. 3. Sandbakk O., Holmberg H.C. A Reappraisal of Success Factors for Olympic Cross-Country Skiing // Int. J. Sports Physiol. Perform. 2014. V. 9. № 1. Р. 117.
  4. 4. Helge J.W., Wu B.J., Willer M. et al. Training affects muscle phospholipid fatty acid composition in humans // J. Appl. Physiol. 2001. V. 90. № 2. Р. 670.
  5. 5. Spriet L.L., Watt M.J. Regulatory mechanisms in the interaction between carbohydrate and lipid oxidation during exercise // Acta Physiol. Scand. 2003. V. 178. № 4. Р. 443.
  6. 6. Randell R.K., Rollo I., Roberts T.J. et al. Maximal Fat Oxidation Rates in an Athletic Population // Med. Sci. Sports Exerc. 2017. V. 49. № 1. P. 133.
  7. 7. Hall A.U., Edin F., Pedersen A., Madsen K. Whole-body fat oxidation increases more by prior exercise than overnight fasting in elite endurance athletes // Appl. Physiol. Nutr. Metab. 2016. V. 41. № 4. P. 430.
  8. 8. Bergstrom J., Hermansen L., Hultman E., Saltin B. Diet, muscle glycogen and physical performance // Acta Physiol. Scand. 1967. V. 71. № 2. Р. 140.
  9. 9. Hermansen L., Hultman E., Saltin B. Muscle glycogen during prolonged severe exercise // Acta Physiol. Scand. 1967. V. 71. № 2. Р. 129.
  10. 10. Ørtenblad N., Westerblad H., Nielsen J. Muscle glycogen stores and fatigue // J. Physiol. 2013. V. 591. № 18. Р. 4405.
  11. 11. Noland R.C. Exercise and Regulation of Lipid Metabolism // Prog. Mol. Biol. Transl. Sci. 2015. V. 135. Р. 39.
  12. 12. Maunder E., Daniel J., Kilding A.E. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values // Front. Physiol. 2018. V. 9. P. 599.
  13. 13. Purdom T., Kravitz L., Dokladny K., Mermier C. Understanding the factors that effect maximal fat oxidation // J. Int. Soc. Sports Nutr. 2018. V. 15. P. 3.
  14. 14. Lyudinina A.Y., Bushmanova E.A., Varlamova N.G., Bojko E.R. Dietary and plasma blood α-linolenic acid as modulator of fat oxidation and predictor of aerobic performance // J. Int. Soc. Sports Nutr. 2020. V. 17. № 1. P. 57.
  15. 15. Rømer T., Thunestvedt Hansen M., Frandsen J. et al. The relationship between peak fat oxidation and prolonged double-poling endurance exercise performance // Scand. J. Med. Sci. Sports. 2020. V. 30. № 11. Р. 2044.
  16. 16. Tarnopolsky M.A., Rennie C.D., Robertshaw H.A. et al. Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity // Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007. V. 292. № 3. P. R1271.
  17. 17. Lyudinina A.Yu., Ivankova G.E., Bojko E.R. Priority use of medium-chain fatty acids during high-intensity exercise in cross-country skiers // J. Int. Soc. Sports Nutr. 2018. V. 15. № 1. P. 57.
  18. 18. Физиолого-биохимические механизмы обеспечения спортивной деятельности зимних циклических видов спорта / Отв. ред. Бойко Е.Р. Сыктывкар: ООО “Коми республиканская типография”, 2019. 256 с.
  19. 19. Dreyer H.C., Fujita S., Cadenas J.G. et al. Resistance exercise increases AMPK activity and reduces 4E-BP1 phosphorylation and protein synthesis in human skeletal muscle // J. Physiol. 2006. V. 576 (Pt. 2). Р. 613.
  20. 20. Ruderman N.B., Park H., Kaushik V.K. AMPK as a metabolic switch in rat muscle, liver and adipose tissue after exercise // Acta Physiol. Scand. 2003. V. 178. № 4. Р. 435.
  21. 21. Andersson A., Sjodin A., Hedman A. et al. Fatty acid profile of skeletal muscle phospholipids in trained and untrained young men // Am. J. Physiol. Endocrinol. Metab. 2000. V. 279. № 4. Р. E744.
  22. 22. Gagnon D.D., Rintamäki H., Gagnon S.S. et al. Cold exposure enhances fat utilization but not non-esterified fatty acids, glycerol or catecholamines availability during submaximal walking and running // Front. Physiol. 2013. V. 4. P. 99.
  23. 23. Людинина А.Ю. Сравнительный анализ профиля жирных кислот в рационе питания и плазме крови спортсменов и студентов // Физиология человека. 2022. Т. 48. № 5. С. 82.
  24. 24. Lippi G., Schena F., Salvagno G.L. et al. Comparison of the lipid profile and lipoprotein(a) between sedentary and highly trained subjects // Clin. Chem. Lab. Med. 2006. V. 44. № 3. Р. 322.
  25. 25. Mougios V., Ring S., Petridou A., Nikolaidis M.G. Duration of coffee- and exercise-induced changes in the fatty acid profile of human serum // J. Appl. Physiol. 2003. V. 94. № 2. Р. 476.
  26. 26. Kiens В., Helge W.J. Adaptation to a High Fat Diet / Nutrition in Sport // Ed. Maughan R.M. Blackwell Science Ltd, 2000. 202 р.
  27. 27. Stellingwerff T., Boon H., Jonkers R.A. et al. Significant intramyocellular lipid use during prolonged cycling in endurance-trained males as assessed by three different methodologies // Am. J. Physiol. Endocrinol. Metab. 2007. V. 292. № 6. Р. E1715.
  28. 28. Stelzer I., Kropfi J.M., Fuchs R. et al. Ultra-endurance exercise induces stress and inflammation and affects circulating cell function // Scand. J. Med. Sci. Sport. 2015. V. 25. № 5. P. e442.
  29. 29. Karl J.P., Margolis L.M., Carrigan C.T. et al. Military training elicits marked increases in plasma metabolomic signatures of energy metabolism, lipolysis, fatty acid oxidation, and ketogenesis // Physiol. Rep. 2017. V. 5. № 17. P. e13407.
  30. 30. Arab L. Biomarkers of Fat and Fatty Acid Intake // J. Nutr. 2003. V. 113. Suppl. 3(3). Р. 925S.
  31. 31. Hodson L., Skeaff C.M., Fielding B.A. Fatty acid composition of adipose tissue and blood in humans and its use as a biomarker of dietary intake // Prog. Lipid Res. 2008. V. 47. № 5. P. 348.
  32. 32. Calder P.C., Waitzberg D.L., Klek S., Martindale R.G. Lipids in Parenteral Nutrition: Biological Aspects // J. Parenter. Enteral Nutr. 2020. V. 44. Suppl. 1. Р. S21.
  33. 33. Simopoulos A.P. The omega-6/omega-3 fatty acid ratio, genetic variation, and cardiovascular disease // Asia Pac. J. Clin. Nutr. 2008. V. 17. Suppl. 1. Р. 131.
  34. 34. Marangonia F., Colomboa C., Martielloa A. et al. The fatty acid profiles in a drop of blood from a fingertip correlate with physiological, dietary and lifestyle parameters in volunteers // Prostaglandins Leukot. Essent. Fatty Acids. 2007. V. 76. № 2. P. 87.
  35. 35. Carey R.A., Montag D. Exploring the relationship between gut microbiota and exercise: short-chain fatty acids and their role in metabolism // BMJ Open Sport Exerc. Med. 2021. V. 7. № 2. P. e000930.
  36. 36. Mickleborough T.D. Omega-3 Polyunsaturated Fatty Acids in Physical Performance Optimization // Int. J. Sport Nutr. Exerc. Metab. 2013. V. 23. № 1. Р. 83.
  37. 37. Zebrovska A., Mizia-Stec K., Mizia M. et al. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes // Eur. J. Sport Sci. 2015. V. 15. № 4. Р. 305.
  38. 38. Philpott J.D., Witard O.C., Galloway S.D.R. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance // Res. Sports Med. 2019. V. 27. № 2. Р. 219.
  39. 39. Абрамова Т.Ф., Никитина Т.М., Кочеткова Н.И. Лабильные компоненты массы тела – критерии общей физической подготовленности и контроля текущей и долговременной адаптации к тренировочным нагрузкам. Методические рекомендации. М.: ООО "Скайпринт", 2013. 132 с.
  40. 40. Da Boit M., Hunter A.M., Gray S.R. Fit with good fat? The role of n-3 polyunsaturated fatty acids on exercise performance // Metabolism. 2017. V. 66. Р. 45.
  41. 41. Peric R., Meucci M., Bourdon P.C., Nikolovski Z. Does the aerobic threshold correlate with the maximal fat oxidation rate in short stage treadmill tests? // J. Sports Med. Phys. Fitness. 2018. V. 58. № 10. Р. 1412.
  42. 42. Amaro-Gahete F.J., Sanchez-Delgado G., Jurado-Fasoli L. et al. Assessment of maximal fat oxidation during exercise: A systematic review // Scand. J. Med. Sci. Sports. 2019. V. 29. № 7. Р. 910.
  43. 43. Holloszy J.O. Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle // J. Biol. Chem. 1967. V. 242. № 9. Р. 2278.
  44. 44. Glancy B., Hartnell L.M., Malide D. et al. Mitochondrial reticulum for cellular energy distribution in muscle // Nature. 2015. V. 523. № 7562. Р. 617.
  45. 45. San-Millán I., Brooks G.A. Assessment of Metabolic Flexibility by Means of Measuring Blood Lactate, Fat, and Carbohydrate Oxidation Responses to Exercise in Professional Endurance Athletes and Less-Fit Individuals // Sports Med. 2018. V. 48. № 2. P. 467.
  46. 46. Людинина А.Ю., Бушманова Е.А., Логинова Т.П. и др. Скорость окисления жиров у лыжников-гонщиков в состоянии покоя и при физической нагрузке "до отказа" // Спортивная медицина: наука и практика. 2018. Т. 8. № 3. С. 13.
  47. 47. Ekblom B. Applied physiology of soccer // Sports Med. 1986. V. 3. № 1. Р. 50.
  48. 48. Kim Y.B., Shulman G.I., Kahn B.B. Fatty acid infusion selectively impairs insulin action on Aktl and protein kinase С lambda/zeta but not on glycogen synthase kinase-3 // J. Biol. Chem. 2002. V. 277. № 36. Р. 32915.
  49. 49. Venables M.C., Achten J., Jeukendrup A.E. Determinants of fat oxidation during exercise in healthy men and women: a cross-sectional study // J. Appl. Physiol. 2005. V. 98. № 1. Р. 160.
  50. 50. Achten J., Jeukendrup A.E. Maximal fat oxidation during exercise in trained men // Int. J. Sports Med. 2003. V. 24. № 8. P. 603.
  51. 51. Jeppesen J., Kiens B. Regulation and limitations to fatty acid oxidation during exercise // J. Physiol. 2012. V. 590. № 5. P.1059.
  52. 52. Solomon T.P., Sistrun S.N., Krishnan R.K. et al. Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults // J. Appl. Physiol. 2008. V. 104. № 5. Р. 13.
  53. 53. Ipavec-Levasseur S., Croci I., Choquette S. et al. Effect of 1-H moderate-intensity aerobic exerciseon intramyocellular lipids in obese men before and after a lifestyle intervention // Appl. Physiol. Nutr. Metab. 2015. V. 40. № 12. Р. 1262.
  54. 54. Людинина А.Ю., Бушманова Е.А., Гарнов И.О. и др. Перспективные маркеры физической и аэробной работоспособности атлетов циклических видов спорта / Сборник материалов тезисов XVI Международной научной конференции по вопросам состояния и перспективам развития медицины в спорте высших достижений "СпортМед-2021". М.: ООО "Российская ассоциация по спортивной медицине и реабилитации больных и инвалидов" (РАСМИРБИ), 2021. С. 76.
  55. 55. Saunders P.U., Telford R.D., Pyne D.B. et al. Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure // J. Appl. Physiol. 2004. V. 96. № 3. Р. 931.
  56. 56. McGlory C., Galloway S.D., Hamilton D.L. et al. Temporal changes in human skeletal muscle and blood lipid composition with fish oil supplementation // Prostaglandins Leukot. Essent. Fatty Acids. 2014. V. 90. № 6. Р. 199.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library