- Код статьи
- 10.31857/S0131164622600343-1
- DOI
- 10.31857/S0131164622600343
- Тип публикации
- Статус публикации
- Опубликовано
- Авторы
- Том/ Выпуск
- Том 49 / Номер выпуска 2
- Страницы
- 54-64
- Аннотация
- В данной статье представлены результаты двойного слепого рандомизированного плацебо-контролируемого исследования, моделирующего снижение магнитного поля Земли кратностью около 1000 раз. Изучены физиологические показатели организма 8 условно здоровых испытуемых мужского пола в возрасте от 27 до 38 лет, находившихся в гипомагнитных условиях в течение 8 ч. Пребывание в условиях сниженного магнитного поля не выявило существенных клинических рисков в малой выборке практически здоровых добровольцев.
- Ключевые слова
- гипомагнитные условия сердечно-сосудистая система высшая нервная деятельность.
- Дата публикации
- 01.02.2023
- Год выхода
- 2023
- Всего подписок
- 0
- Всего просмотров
- 22
Библиография
- 1. Afshinnekoo E., Scott R.T., MacKay M.J. et al. Fundamental Biological Features of Spaceflight: Advancing the Field to Enable Deep-Space Exploration // Cell. 2020. V. 183. № 5. P. 1162.
- 2. Hassler D.M., Zeitlin C., Wimmer-Schweingruber R.F. et al. Mars’ surface radiation environment measured with the Mars Science Laboratory’s Curiosity rover // Science. 2014. V. 343. № 6169. P. 1244797.
- 3. Patel Z.S., Brunstetter T.J., Tarver W.J. et al. Red risks for a journey to the red planet: The highest priority human health risks for a mission to Mars // NPJ Microgravity. 2020. V. 6. № 1. P. 33.
- 4. Jillings S., Van Ombergen A., Tomilovskaya E. et al. Macro- and microstructural changes in cosmonauts' brains after long-duration spaceflight // Sci. Adv. 2020. V. 6. № 36. P. eaaz9488.
- 5. Vernice N.A., Meydan C., Afshinnekoo E., Mason C.E. Long-term spaceflight and the cardiovascular system // Precis. Clin. Med. 2020. V. 3. № 4. P. 284.
- 6. Panasyuk M.I., Spassky A.V., Trukhanov K.A. Hypo-Magnetic Problems of the Deep Space Missions // J. Astrobiol. Outreach. V. 2. № 3. https://doi.org/10.4172/2332-2519.1000e106
- 7. Рагульская М.В. Влияние вариаций солнечной активности на функционально здоровых людей. Автореф. … канд. физ.-мат. наук. 01.03.03: М., 2005. 165 с.
- 8. Михайлова З.Д., Климкин П.Ф., Шаленкова М.А. и др. Оценка значимости уровня мелатонина и некоторых метеорологических и гелиогеофизических факторов у больных с острым коронарным синдромом // Клиническая медицина. 2017. Т. 95. № 10. С. 888.
- 9. Кравченко К.Л., Александрова Н.В., Язев С.А. Гелиофизические факторы и преступность в Иркутской области // Известия Иркутского государственного университета. Серия: Науки о Земле. 2010. Т. 3. № 2. С. 103.
- 10. Кишинёв Д.А., Чернецов Н.С. Магниторецепторные системы у птиц: обзор современных исследований // Журн. общей биологии. 2014. Т. 75. № 2. С. 104.
- 11. Селезнев В.П., Селезнева Н.В. Навигационная бионика. М.: Машиностроение, 1987. 256 с.
- 12. Куранова М.Л., Павлов А.Е., Спивак И.М. и др. Воздействие гипомагнитного поля на живые системы // Вестн. СПбГУ. Сер. 3. Биология. 2010. № 4. С. 99.
- 13. Саримов Р.М., Бинги В.Н., Миляев В.А. Влияние компенсации геомагнитного поля на когнитивные процессы человека // Биофизика. 2008. Т. 53. № 5. С. 856.
- 14. Гурфинкель Ю.И., Васин А.Л., Матвеева Т.А., Сасонко М.Л. Оценка влияния гипомагнитных условий на капиллярный кровоток, артериальное давление и частоту сердечных сокращений // Авиакосм. и экол. мед. 2014. Т. 48. № 2. С. 24. Gurfinkel Yu.I., Vasin А.L., Matveeva Т.А., Sasonko М.L. [Evaluation of the hypomagnetic environment effects on capillary blood circulation, blood pressure and heart rate] // Aviakosm. Ekol. Med. 2014. V. 48. № 2. P. 24.
- 15. Васин А.Л., Шафиркин А.В., Груфинкель Ю.И. Влияние искусственного периодического геомагнитного поля миллигерцового диапазона на показатели вариабельности сердечного ритма // Авиакосм. и экол. мед. 2019. Т. 53. № 6. С. 62. Vasin A.L., Shafirkin A.V., Gurfinkel Yu.I. [Effect of artificial alternating geomagnetic field in the millihertz range on the heart rate variability indices] // Aviakosm. Ekol. Med. 2019. V. 53. № 6. P. 62.
- 16. Culver B.H., Graham B.L., Coates A.L. et al. Recommendations for a standardized pulmonary function report an official American Thoracic Society Technical Statement // Am. J. Respir. Crit. Care Med. 2017. V. 196. № 11. P. 1463.
- 17. Fullmer S., Benson-Davies S., Earthman C.P. et al. Evidence analysis library review of best practices for performing indirect calorimetry in healthy and non-critically ill individuals // J. Acad. Nutr. Diet. 2015. V. 115. № 9. P. 1417.
- 18. Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology // Circulation. 1996. V. 93. № 5. P. 1043.
- 19. Баевский Р.М., Иванов Г.Г., Чирейкин Л.В. и др. Анализ вариабельности сердечного ритма при использовании различных электрокардиографических систем (методические рекомендации) // Вестник аритмологии. 2001. № 24. С. 65.
- 20. Лучицкая Е.С., Фунтова И.И., Tank J. и др. Измерение показателей, характеризующих раннее сосудистое старение с использованием осциллометрического метода в космическом полете // Авиакосм. и экол. мед. 2021. Т. 55. № 6. С. 23. Luchitskaya Е.S., Funtova I.I., Tank J. et al. [Measuring indicators characterizing early vascular aging using the oscillometric method in space flight] // Aviakosm. Ekol. Med. 2021. V. 55. № 6. P. 23.
- 21. Weber T., Wassertheurer S., Hametner B. et al. Noninvasive methods to assess pulse wave velocity: comparison with the invasive gold standard and relationship with organ damage // J. Hypertens. 2015. V. 33. № 5. P. 1023.
- 22. Kerdo I. Ein aus Daten der Blutzirkulation kalkulierter Index zur Beurteilung der vegetativen Tonuslage // Acta Neuroveg. 1966. V. 29. № 2. P. 250.
- 23. Gesche H., Grosskurth D., KuchlerG., Patzak A. Continuous blood pressure measurement by using the pulse transit time: comparison to a cuff- based method // Eur. J. Appl. Physiol. 2012. V. 112. № 1. P. 309.
- 24. Kemp D.T. Stimulated acoustic emissions from within the human auditory system // J. Acoust. Soc. Am. 1978. V. 64. № 5. P. 1386.
- 25. Brown A.M., Kemp D.T. Suppressibility of the 2f1–f2 stimulated acoustic emissions in gerbil and man // Hear. Res. 1984. V. 13. № 1. P. 29.
- 26. Gorga M.P., Neely S.T., Bergman B.M. et al. A comparison of transient-evoked and distortion product otoacoustic emissions in normal-hearing and hearing-impaired subjects // J. Acoust. Soc. Am. 1993. V. 94. № 5. P. 2639.
- 27. Гнездицкий В.В. Вызванные потенциалы мозга в клинической практике. М.: МЕДпресс информ, 2003. 264 с.
- 28. Schomer D.L., Lopes da Silva F.H. Niedermeyer’s Electroencephalography: Basic Principles, Clinical Applications, and Related Fields. 6th Edition. Phaladelphia: Lippincott Williams & Wilkins, 2011. P. 1205.
- 29. Демин А.В., Суворов А.В., Орлов О.И. Особенности гемодинамики здоровых мужчин в гипомагнитных условиях // Авиакосм. и экол. мед. 2021. Т. 55. № 2. С. 63. Demin A.V., Suvorov A.V., Orlov O.I. [Peculiarities of hemodynamics in healthy men under hypomagnetic conditions] // Aviakosm. Ekol. Med. 2021. V. 55. № 2. P. 63.
- 30. Beischer D.E. Biomagnetics // Ann. N.Y. Acad. Sci. 1965. V. 134. № 1. P. 454.
- 31. Fu J.-P., Mo W.-Ch., Liu Y., He R.-Q. Decline of cell viability and mitochondrial activity in mouse skeletal muscle cell in a hypomagnetic field // Bioelectromagnetics. 2016. V. 37. № 4. P. 212.